بررسی اثر پروبیوتیکهای باسیلوس کواگولانس و لاکتوباسیلوس پلانتاروم بر کاهش جذب کادمیوم در موش صحرایی
محورهای موضوعی : علوم و صنایع غذاییمجید مجلسی 1 , سید شهرام شکرفروش 2 , حمیدرضا قیصری 3 , سعید نظیفی سعید نظیفی 4 , جواد ساجدیانفرد 5
1 - دانشجوی دکتری تخصصی بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
2 - استاد بخش بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
3 - دانشیار بخش بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
4 - استاد بخش علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
5 - دانشیار بخش علوم پایه، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
کلید واژه: پروبیوتیک, کادمیوم, موش صحرایی, <باسیلوس کواگولانس>, <لاکتوباسیلوس پلانتاروم>,
چکیده مقاله :
کادمیومفلزی سنگینی است که گسترش بالایی در محیط دارد و عوارض متعددی برای سلامتی انسان و حیوانات ایجاد میکند. مطالعات مختلفی نشانگر حذف فلزات سنگین توسط باکتریهاست. هدف از این مطالعه بررسی اثرات باکتری های باسیلوس کواگولانس و لاکتوباسیلوس پلانتاروم بر کاهش تجمع کادمیوم در بافتهای کلیه و کبد موش صحرایی می باشد. در این بررسی 24 سر موش صحرایی نژاد ویستار بهطور تصادفی در 6 گروه شاهد و تیمار تقسیم شدند. گروه های مواجهه با کلریدکادمیوم (100 میکروگرم در میلیلیتر) و حیوانات تیمار شده با پروبیوتیک (CFU/ml 109) روزانه 1 میلیلیتر محلول کادمیوم و یا سوسپانسیون باکتری را بهمدت 24 روز از طریق میل مخصوص گاواژ دریافت کردند. در روز 24 موش ها پس از بیهوشی با اتر کشته شدند و میزان کادمیوم در مدفوع، کلیه و کبد آنها با روش اسپکترفوتومتری جذب اتمی گرافیت فورانس اندازهگیری شد. پروبیوتیک های باسیلوس کواگولانس و لاکتوباسیلوس پلانتاروم بهترتیب سبب افزایش 8/29 و 3/19 درصدی دفع کادمیوم از طریق مدفوع و کاهش 9/10 و 5/21 درصدی تجمع این فلز سنگین در کلیه موش صحرایی شدند. نتایج این مطالعه نشان داد که هر دو پروبیوتیک تجویز شده اثرات قابلملاحظهای در کاهش جذب گوارشی کادمیوم داشتند.
Cadmium is a wide-spread heavy metal that causes a wide range of health problems in animals and humans. Many reports showed the biosorption of heavy metals by bacteria. The objectives of this study were to evaluate the potency of probiotics bacteria of Lactobacillus plantarum and Bacillus coagulans against cadmium adsorption in rats. Twenty four male adult Wistar rats were randomly divided into six groups. Cadmium treated groups received 1 ml of 100 µg/ml CdCl2 and probiotics groups were administrated 1 ml of (109 CFU/ml) of probiotics during 24 days by special gavage needle once daily. Levels of cadmium were determined by using graphite furnace atomic absorption spectrometry. Probiotics B. coagulans and L. plantarum caused 29.8% and 19.3% increasing in removal of cadmium through defecation and decreased 10.9 and 21.5 % of cadmium accumulation in kidney of Wistar rats. The results showed that oral administration of both probiotics offered a significant protective effect against cadmium adsorption in rats.
● Abdel-Salam, A.M., Al-Dekheil, A., Babkr, A., Farahna, M. and Mousa, H.M. (2010). High fiber probiotic fermented mare’s milk reduces the toxic effects of mercury in rats. North American Journal of Medical Sciences, 2, 569–275.
● Beveridge, T.J. and Fyfe, W.S. (1985). Metal fixation by bacterial cell walls. Canadian Journal of Earth Science, 22, 1893-1898.
● FAO & WHO, (2001). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Córdoba, Argentina, 1–34.
● Gavrilescu, M. (2004). Removal of Heavy Metals from the Environment by Biosorption. Engineering in Life Sciences, 4, 219–232.
● Halttunen, T., Salminen, S. and Tahvonen, R. (2007). Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology, 114, 30–5.
● Ibrahim, F., Halttunen, T., Tahvonen, R. and Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52, 877–885.
● Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., et al., (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164, 701–709.
● Malago, J.J. and Koninkx, J.F.J.G. (2011). Probiotic Bacteria and Enteric Infections. Springer. 9–11.
● Monachese, M., Burton, J.P. and Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appllied and Environmental Microbiology, 78, 6397–404.
● Nwokocha, C.R., Owu, D.U., Nwokocha, M.I., Ufearo, C.S. and Iwuala, M.O.E. (2012). Comparative study on the efficacy of Allium sativum (garlic) in reducing some heavy metal accumulation in liver of wistar rats. Food Chemistry and Toxicology, 50, 222–6.
● Ripamonti, B., Agazzi, A., Baldi, A., Balzaretti, C., Bersani, C., Pirani, S., et al., (2009). Administration of Bacillus coagulans in calves: recovery from faecal samples and evaluation of functional aspects of spores. Veterinary Research Communications, 33, 991–1001.
● Schut, S., Zauner, S., Hampel, G., König, H. and Claus, H. (2011). Biosorption of copper by wine-relevant lactobacilli. International Journal of Food Microbiology, 145, 126–131.
● Szkoda, J., Mudzki, J. (2005). Determination of lead and cadmium in biological material by graphite furnace atomic absorption spectrometry method. Bulletin of the Veterinary Institute in Pulawy, 49, 89-92.
● Tian, F., Zhai, Q., Zhao, J., Liu, X., Wang, G., Zhang, H., et al., (2012). Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biological Trace Element Research, 150, 264–71.
● Turroni, F., Foroni, E., Pizzetti, P., Giubellini, V., Ribbera, A., Merusi, P., et al., (2009). Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appllied and Environmental Microbiology, 75, 1534–1545.
● Wang, L., Zhang, J., Guo, Z., Kwok, L., Ma, C., Zhang, W., et al., (2014). Effect of oral consumption of probiotic Lactobacillus plantarum P-8 on fecal microbiota, SIgA , SCFAs, and TBAs of adults of different ages. Nutrition, 30, 776–783.
_||_● Abdel-Salam, A.M., Al-Dekheil, A., Babkr, A., Farahna, M. and Mousa, H.M. (2010). High fiber probiotic fermented mare’s milk reduces the toxic effects of mercury in rats. North American Journal of Medical Sciences, 2, 569–275.
● Beveridge, T.J. and Fyfe, W.S. (1985). Metal fixation by bacterial cell walls. Canadian Journal of Earth Science, 22, 1893-1898.
● FAO & WHO, (2001). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Córdoba, Argentina, 1–34.
● Gavrilescu, M. (2004). Removal of Heavy Metals from the Environment by Biosorption. Engineering in Life Sciences, 4, 219–232.
● Halttunen, T., Salminen, S. and Tahvonen, R. (2007). Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology, 114, 30–5.
● Ibrahim, F., Halttunen, T., Tahvonen, R. and Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52, 877–885.
● Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., et al., (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164, 701–709.
● Malago, J.J. and Koninkx, J.F.J.G. (2011). Probiotic Bacteria and Enteric Infections. Springer. 9–11.
● Monachese, M., Burton, J.P. and Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appllied and Environmental Microbiology, 78, 6397–404.
● Nwokocha, C.R., Owu, D.U., Nwokocha, M.I., Ufearo, C.S. and Iwuala, M.O.E. (2012). Comparative study on the efficacy of Allium sativum (garlic) in reducing some heavy metal accumulation in liver of wistar rats. Food Chemistry and Toxicology, 50, 222–6.
● Ripamonti, B., Agazzi, A., Baldi, A., Balzaretti, C., Bersani, C., Pirani, S., et al., (2009). Administration of Bacillus coagulans in calves: recovery from faecal samples and evaluation of functional aspects of spores. Veterinary Research Communications, 33, 991–1001.
● Schut, S., Zauner, S., Hampel, G., König, H. and Claus, H. (2011). Biosorption of copper by wine-relevant lactobacilli. International Journal of Food Microbiology, 145, 126–131.
● Szkoda, J., Mudzki, J. (2005). Determination of lead and cadmium in biological material by graphite furnace atomic absorption spectrometry method. Bulletin of the Veterinary Institute in Pulawy, 49, 89-92.
● Tian, F., Zhai, Q., Zhao, J., Liu, X., Wang, G., Zhang, H., et al., (2012). Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biological Trace Element Research, 150, 264–71.
● Turroni, F., Foroni, E., Pizzetti, P., Giubellini, V., Ribbera, A., Merusi, P., et al., (2009). Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appllied and Environmental Microbiology, 75, 1534–1545.
● Wang, L., Zhang, J., Guo, Z., Kwok, L., Ma, C., Zhang, W., et al., (2014). Effect of oral consumption of probiotic Lactobacillus plantarum P-8 on fecal microbiota, SIgA , SCFAs, and TBAs of adults of different ages. Nutrition, 30, 776–783.