بررسی خواص عملکردی و آنتی اکسیدانی پروتئین هیدرولیز شده اندرونه ماهی سفید(Rutilus kutum) با آنزیمهای آلکالاز و تریپسین
محورهای موضوعی : فرآورده های شیلاتمریم نوروزی چاکلی 1 , شبنم حقیقت خواجوی 2 , رضا صفری 3
1 - دانش آموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - پژوهشکده اکولوژی دریای خزر، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی ، ساری، ایران
کلید واژه: هیدرولیز آنزیمی, پروتئین هیدرولیز شده, خواص عملکردی, خواص آنتیاکسیدانی, اندرونه ماهی سفید,
چکیده مقاله :
در تحقیق حاضر پروتئین اندرونه ماهی سفید با نام علمیRutilus frisii kutum با استفاده از آنزیم های آلکالاز و تریپسین هیدرولیزگردید. خواص عملکردی شامل حلالیت، ظرفیت کف کنندگی و پایداری کف، فعالیت امولسیفایری و پایداری امولسیونی، ظرفیت جذب روغن و نگهداری آب و همچنین خواص آنتی اکسیدانی شامل قدرت مهار رادیکال آزادDPPH و قدرت احیاکنندگی آهن سه ظرفیتی (یون فریک) مورد آزمون قرار گرفتند. نتایج نشان داد که بیشترین میزان پروتئین، درجه هیدرولیز و بازیافت پروتئین در پروتئین های هیدرولیز شده تولیدی توسط آنزیم آلکالاز مشاهده گردید. بیشترین میزان حلالیت و جذب روغن در پروتئین هیدرولیز شده اندرونه ماهی سفید با غلظت 1/5 درصد تریپسین و بیشترین مقدار جذب آب با غلظت 1/5 درصد آلکالاز بدست آمد. بیشترین شاخص ظرفیت کف کنندگی، فعالیت امولسیفایری و پایداری امولسیونی در پروتئین هیدرولیز شده اندرونه ماهی سفید با غلظت 0/5 درصد تریپسین مشاهده شد. این در حالی است که بیشترین پایداری کف حاصل با آنزیم آلکالاز 1/5 درصد مشاهده گردید .بیشترین میزان خاصیت آنتی اکسیدانی و احیاکنندگی در تیمار پروتئین هیدرولیز شده حاصل از اندرونه ماهی سفید با غلظت 0/5 درصد آلکالاز برآورد گردید. نتایج تحقیق حاضر، پروتئین هیدرولیز شده حاصل را به عنوان یک منبع مناسب پروتئین با خواص آنتی اکسیدانی مطلوب و همچنین به عنوان امولسیفایر و عامل کف کننده در صنایع غذایی پیشنهاد می نماید.
3.Abraha, B., Mahmud, A., Samuel, M., Yhdego, W. and Kibrom, S. 2017. Production of Fish Protein Hydrolysate from Silver Catfish (Arius thalassinus). MOJ Food Process Technol, 5 (4): 00132. DOI.
4.Arvanitoyannis, I. S. and Kassaveti, A. 2008. Fish industry waste: treatments, environmental impacts, current and potential uses. International Journal of Food Science and Technology, 43: 726-745.
5.Aspmo, S. I., Horn, S. J. and Eijsink, V. G. 2005. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40: 1957-1966.
6.Benjakul, S. and Morrissey, M. T. 1997. Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45: 3423-3430.
8.Chabeaud, A., Dutournié, P., Guérard, F., Vandanjon, L. and Bourseau, P. 2009. Application of response surface methodology to optimise the antioxidant activity of a saithe (Pollachius virens) hydrolysate. Marine Biotechnology, 11:445-455.
9.Chobert, J. M., Bertrand-Harb, C. and Nicolas, M. G. 1988. Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin. Journal of Agricultural and Food Chemistry, 36: 883-892.
10.Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y. and Yang, H. 2008. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107: 1485-1493.
11.Gutiérrez, M. E., Garcı́a, A. F., DE Madariaga, M. A., Sagrista, M. L., Casadó, F. J. and Mora, M. 2003. Interaction of tocopherols and phenolic compounds with membrane lipid components: evaluation of their antioxidant activity in a liposomal model system. Life Sciences, 72: 2337-2360.
12.Horwitz, W. 2010. Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz, Gaithersburg (Maryland): AOAC International, 1997.
13.Hoyle, N. T. and Merrltt, J. H. 1994. Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59:76-79.
14.KIM, S.-K., Kim, Y.-T., Byun, H.-G., Nam, K.-S., Joo, D.-S. and Shahidi, F. 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of Agricultural and Food Chemistry, 49: 1984-1989.
15.Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102: 1317-1327.
16.Ko, J.-Y., Lee, J.-H., Samarakoon, K., Kim, J.-S. and Jeon, Y.-J. 2013. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food and Chemical Toxicology, 52: 113-120.
17.Koutsopoulos, S., Patzsch, K., Bosker, W. T. and Norde, W. 2007. Adsorption of trypsin on hydrophilic and hydrophobic surfaces. Langmuir, 23: 2000-2006.
18.Kristinsson, H. G. and Rasco, B. A. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40: 43-81.
19.Lin, C. and Zayas, J. 1987. Functionality of defatted corn germ proteins in a model system: fat binding capacity and water retention. Journal of Food Science, 52:1308-1311.
20.Morr, C., German, B., Kinsella, J., Regenstein, J., Buren, J. V., Kilara, A., Lewis, B. and Mangino, M. 1985. A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science, 50: 1715-1718.
21.Mutamimah, D., Ibrahim, B. and Trilaksani, W. 2018. Antioxidant activity of protein hydrolysate produced from tuna eye (Thunnus sp.) by enzymatic hydrolysis. Journal Pengolahan Hasil Perikanan Indonesia, 21: 522-531.
22.Muzaifa, M., Safriani, N. and Zakaria, F. 2012. Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. Aquaculture, Aquarium, Conservation & Legislation, 5: 36-39.
23.Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. and Shahiri, H. 2009a. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115: 238-242.
24.Ovissipour, M., Taghiof, M., Motamedzadegan, A., Rasco, B. and Molla, A. E. 2009b. Optimization of enzymatic hydrolysis of visceral waste proteins of beluga
sturgeon Huso huso using Alcalase. International Aquatic Research, 1: 31-38.
25.Oyaizu, M. 1986. Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics, 44: 307-315.
26.Pacheco-Aguilar, R., Mazorra-Manzano, M. A. and Ramírez-Suárez, J. C. 2008. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chemistry, 109:782-789.
27.Pearce, K. N. and Kinsella, J. E. 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26:716-723.
28.Raftani Amiri, Z., Safari, R. and Bakhshandeh, T. 2016. Functional properties of fish protein hydrolysates from Cuttlefish (Sepia pharaonis) muscle produced by two commercial enzymes. Iranian Journal of Fisheries Sciences, 15: 1485-1499.
29.Ren, J., Wang, H., Zhao, M., Cui, C. and Hu, X. 2010. Enzymatic hydrolysis of grass carp myofibrillar protein and antioxidant properties of hydrolysates. Czech Journal of Food Sciences, 28:475-484.
30.Rodríguez-Ambriz, S., Martínez-Ayala, A., Millán, F. and Davila-Ortiz, G. 2005. Composition and functional properties of Lupinus campestris protein isolates. Plant Foods for Human Nutrition, 60:99-107.
31.Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J. M., Gildberg, A. and Rasco, B. 2012. Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5: 73-79.
32.Sakanaka, S., Tachibana, Y. and Okada, Y. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chemistry, 89: 569-575.
33.Shahidi, F., Han, X.-Q. and Synowiecki, J. 1995. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53: 285-293.
34.Shirahigue, L. D., Silva, M. O., Camargo, A. C., Sucasas, L. F. D. A., Borghesi, R., Cabral, I. S. R., Savay-Da-Silva, L. K., Galvão, J. A. and Oetterer, M. 2016. The feasibility of increasing lipid extraction in Tilapia (Oreochromis niloticus) waste by proteolysis. Journal of Aquatic Food Product Technology, 25: 265-271.
35.Šližytė, R., Rustad, T. and Storrø, I. 2005. Enzymatic hydrolysis of cod (Gadus morhua) by-products: Optimization of yield and properties of lipid and protein fractions. Process Biochemistry, 40:3680-3692.
36.Souissi, N., Bougatef, A., Triki-Ellouz, Y. and Nasri, M. 2007. Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology, 45:187-194.
37.Wu, H.-C., Chen, H.-M. and Shiau, C.-Y. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36:949-957.
38.Yang, B., Zhao, M., Shi, J., Yang, N. and Jiang, Y. 2008. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chemistry, 106: 685-690.
39.Yang, X.-R., Zhang, L., Ding, D.-G., Chi, C.-F., Wang, B. and Huo, J.-C. 2019. Preparation, identification, and activity evaluation of eight antioxidant peptides from protein hydrolysate of hairtail (Trichiurus japonicas) muscle. Marine Drugs, 17: 23.
_||_