• Home
  • maryam mizani

    List of Articles maryam mizani


  • Article

    1 - Optimization of the ultrasound-assisted extraction process of aspartic acid from molasses and its anti-scaling capability in sugar industry evaporators
    Journal of Food Biosciences and Technology , Issue 29 , Year , Spring 2024
    This study aimed to optimize the extraction of aspartic acid from sugar beet molasses using an ultrasound-assisted extraction method and its use as a green antiscaling agent in the evaporator tubes of the sugar industry. The results of ultrasound-assisted extraction sho More
    This study aimed to optimize the extraction of aspartic acid from sugar beet molasses using an ultrasound-assisted extraction method and its use as a green antiscaling agent in the evaporator tubes of the sugar industry. The results of ultrasound-assisted extraction showed that the linear model is the best model to describe the behavior of aspartic acid extraction. It was determined that the optimal conditions for extracting aspartic acid using the ultrasound-assisted method include an extraction temperature of 25.09 °C, pH equal to 7, ultrasound power of 69.99%, and no ethanol. Aspartic acid extracted under optimal conditions with three different concentrations (10, 25, and 50 mg/100g) at three various temperatures (60, 90, and 120 °C) was applied to the scales of the evaporator tubes of the sugar industry. The results showed that the highest anti-scaling efficiency for all three processes was related to the treatment performed at 90 °C with a concentration of 50 mg/100 g. FESEM images showed that with increasing temperature up to 90 °C and increasing concentration up to 50 mg/100g, the scales formed on the evaporator tube changed from crystalline and uniform state to porous with fine particles. The results of EDS showed that by increasing the temperature to 90 °C and increasing the concentration to 50 mg/100g, the calcium and silica content in the scales of the evaporator tubes decreases. The results of FTIR showed that by applying aspartic acid as an antiscaling of stable crystals, the scales become smaller and more unstable crystals. Manuscript profile

  • Article

    2 - Application of Bio-Nanocomposite Films Based on Nano-TiO2 and Cinnamon Essential Oil to Improve the Physiochemical, Sensory, and Microbial Properties of Fresh Pistachio
    Journal of Nuts , Issue 4 , Year , Summer 2020
    Bio-nanocomposite films based on sago starch containing 2% cinnamon essential oil and 3% titanium dioxide nanoparticles were used in the packaging of fresh pistachios and stored at different temperatures (4, 25, and 35 ˚C) and relative humidity (30, 50, and 70%) for 20 More
    Bio-nanocomposite films based on sago starch containing 2% cinnamon essential oil and 3% titanium dioxide nanoparticles were used in the packaging of fresh pistachios and stored at different temperatures (4, 25, and 35 ˚C) and relative humidity (30, 50, and 70%) for 20 days, and pistachio properties were evaluated in five-day intervals. Using these films in packaging improved the physicochemical properties of pistachios, including moisture, fat, shrinkage, color characteristics, and sensory characteristics improved, and the growth of Aspergillus flavus, aflatoxin production, and the amount of hydro-peroxide increased much more slowly compared to the control samples. Temperature and relative humidity had significant effects on the physicochemical properties and deterioration of fresh pistachios (p Aspergillus flavus, peroxide index, and aflatoxin ​​had the highest values. The most desirable conditions for fresh pistachio storage were the temperature of 4˚C and 30% relative humidity. Therefore, this active packaging can be utilized as a proper alternative to conventional packaging. Manuscript profile

  • Article

    3 - Production of natural pigment by Dunaliella salina: Key factors screening through Placket-Burman design
    Journal of Food Biosciences and Technology , Issue 30 , Year , Summer 2024

    The distinctive biological and technical characteristics of Dunaliella, including the need for cheap culture medium, fast growth rate, simple genetic manipulation, and easy scale-up methods, have made this microorganism the prime candidate for molecular agriculture, More

    The distinctive biological and technical characteristics of Dunaliella, including the need for cheap culture medium, fast growth rate, simple genetic manipulation, and easy scale-up methods, have made this microorganism the prime candidate for molecular agriculture, and a suitable host for the production of antibodies, vaccines and valuable compounds such as carotenoids, glycerol, unsaturated fats, vitamins, proteins, and bioactive substances. Therefore, this alga may be one of the most appropriate models to investigate and utilize to produce useful compounds by optimizing its environment. This study investigated the feasibility of high biomass and pigment (chlorophyll a, chlorophyll b, and carotenoids) accumulation in a species of Dunaliella salina native to Iran by creating mixotrophic conditions using the Placket-Burman screening design. In this design, the effects of 10 variables, including pH, light intensity, carbon source (date waste), Nitrogen source, NaCl, Fe (ferrous sulfate), vitamin B1, vitamin B12, Incubation time and Inoculum concentration were investigated. The results showed the significant effects of carbon source, sodium chloride, pH, inoculum concentration, and incubation time on biomass accumulation the value of which varied from 1.90-8.54 g/100. All variables except vitamins had a significant effect on the accumulation of chlorophyll and increased its amount from 0.60-1.35 mg/l. While variables such as pH, incubation time, sodium chloride, light intensity, and iron effected the accumulation of chlorophyll b significantly. pH, carbon source, sodium chloride, nitrogen source, and light intensity affected the accumulation of carotenoids, and the highest amounts of chlorophyll b and carotenoids were obtained as 2.8 and 8.6 mg/l, respectively.

    Manuscript profile

  • Article

    4 - Hydrocolloids-germinated wheat flour interactions in the formulation of a thin flatbread packaged with an active modified atmosphere packaging system
    Journal of Food Biosciences and Technology , Issue 30 , Year , Summer 2024

    A modified formulation and an efficient packaging system have improved flatbreads with short storability, resulting in long shelf life and exportability. This research investigates the use of germinated wheat powder, κ-carrageenan, and guar gum in a modified at More

    A modified formulation and an efficient packaging system have improved flatbreads with short storability, resulting in long shelf life and exportability. This research investigates the use of germinated wheat powder, κ-carrageenan, and guar gum in a modified atmosphere packaging system to enhance the storability of Lavash, an Iranian flatbread. A three-component D-optimal mixture design was used to create sixteen dough formulations, determining the best ones based on rheological and thermal analysis data. The Mixolab test was used to analyze retrogradation rates. The optimal formulation demonstrated a synergistic effect between κ-carrageenan (0.055%) and germinated wheat powder (0.208%), increasing moisture content up to 9% and decreasing setback factor to 28%. Principle component analysis (PCA) was used to analyze the correlation between the rheological, textural, and sensory attributes of dough and cooked bread samples, influenced by the type and quantity of hydrocolloids. Chewability was highly correlated with PC1 and adversely affected by guar gum and carrageenan, while the setback factor was correlated with PC2 and negatively affected by malt. Thermoformed polyvinylchloride containers with water and oxygen absorbent sachets were used as active modified atmosphere packaging (Active-MAP) to preserve microbial and textural characteristics for up to 2 months at 30 °C.

    Manuscript profile