Evaluation of Antioxidant and Functional Properties of Hydrolyzed Protein with Enzymatic Hydrolysis of Wheat Germ Protein
Subject Areas :
Sakineh Ghelich
1
,
Peiman Ariayi
2
,
Mohammad Ahmadi
3
1 - دانشجویدکتری،گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی ، آمل، ایران.
2 - دانشیار، گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی،آمل، ایران.
3 - استادیار،گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی،آمل، ایران
Received: 2021-09-20
Accepted : 2021-11-03
Published : 2024-07-06
Keywords:
Hydrolyzed Protein,
Commercial Enzymes,
Wheat Germ,
Antioxidant,
Functional Properties.,
Abstract :
Abstract
The bioactive peptides in the hydrolyzed protein have led to high antioxidant activity and good functional properties in these proteins. The aim of this study was to produce hydrolyzed protein from wheat germ and analyze its antioxidant and functional properties. For this purpose, hydrolyzed wheat germ protein was produced by commercial enzymes alcalase and flavourzyme enzyme (Optimal pH of alcalase activity 8.5, flavourzyme 7) at intervals of 10, 20 and 30 minutes. Degrees of hydrolysis, functional properties including solubility, foaming and emulsifying properties, as well as antioxidant properties including free radical scavenging DPPH and ABTS and ferric reducing power weسre measured. The results showed that the protein hydrolyzed by alcalase had a higher degree of hydrolysis than the enzyme flavourzyme. Also, increasing the hydrolysis time had a positive effect on the mentioned parameters (p <0.05). The highest values of hydrolysis by alcalase were observed in 30 minutes (28.26%) and this treatment had the highest antioxidant activity and functional properties (p <0.05). In general, it can be said that hydrolyzed protein from wheat germ (by alcalase enzyme) has the best functional and antioxidant properties and therefore can be used as a substitute for animal based protein in the diet as well as active ingredients in food formulations.
References:
صادقیان امین، ی، صادقی ماهونک، ع، قربانی، م، اعلمی، م، و جوشقانی، ح، 1398. اثر زمان فرآیند بر ویژگیهای عملکردی و آنتیاکسیدانی پروتئین هیدرولیز شده کینوآ با آلکالاز و پانکراتین. علوم تغذیه و صنایع غذایی ایران،14 (4)، صص. 102-89.
Aderinola, T., Fagbemi, T., Enujiugha, V., Monisola Alashi, A., Emmanuel .and Aluko, R., 2018. Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 10, pp.862-877.
Alashi, A.M., Blanchard, C.L., Mailer, R.J., Agboola, S.O., Mawson, A.J., Rong, H., Malomo, S.A., Girgih, A.T.and Aluko, R.E., 2014. Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Research International, 55, pp. 281–287.
Attia, R.S. and Abou-Gharbia, H.A., 2011. Evaluation and Stabilization of Wheat Germ and Its Oil Characteristics. Alex. J. Fd. Sci. & Technol, 8(2), pp.31-39.
Bera, M.B. and Mukherjee, R.K., 1989. Solubility, emulsifying, and foaming properties of rice bran protein concentrates. J. Food Sci,54(1), pp.142-145.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M., 2009. Antioxidant & free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 14, pp. 1198-1205.
Chen, L., Chen, J., Ren, J. and Zhao, M., 2011. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocoll, 25(5), pp. 887– 97.
Chi, C. F., Hu, F. Y., Wang, B., Li, T. and Ding, G. F., 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, pp. 301-313.
FAO/WHO., 1990. Energy and protein requirements. Report of joint FAO/ WHO/UNU Expert Consultation Technical Report. FAO/WHO and United Nations University, Geneva, Series No. 724.
Feyzi, S., Varidi, M., Zareb, F. and Varidi, J., 2015. Extraction Optimization of Fenugreek Seed Protein, science of food and agriculture, 15, pp. 3165–3176.
Giménez, B., Gómez-Estaca, J., Alemán, A., Gómez-Guillén, M. C. and Montero, M. P., Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocolloids, 23(3), pp. 585-592.
Gomez, M., Gonzalez, J. and Oliete, B., 2012. Effect of extruded wheat germ on dough rheology and bread quality. Food Bioprocess Technology, 5(6), pp. 2409-2418.
Hamzeh, A., Rezaei, M. and Khodabandeh,S. 2019., Antiproliferative and antioxidative activities of cuttlefish (Sepia pharaonis) protein hydrolysates as affected by degree of hydrolysis. Food Measure,12, pp.721–727.
Karami, Z., Peighambardoust, S.H., Hesari, J., Akbari-Adergani, B. and Andreu, D., 2019. Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience, 32, pp.100450.
Klompong, V., Benjakul, S., Yachai, M., Visessanguan ,W., Shahidi, F. and Hayes, K. D., 2009. Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe Trevally (Selaroides leptolepis). J Food Sci, 74(2), pp.126-133.
Ma, W., Qi, B., Sami, R., Jiang, L., Li, Y. and Wang, H., 2018. Conformational and Functional Properties of Soybean Proteins Produced by Extrusion-Hydrolysis Approach. Int J Anal Chem, 23, pp. 918-932.
Mazloomi-Kiyapey, S.N., Sadeghi-Mahoonak, A., Ranjbar-Nedamani, E. and Nourmohammadi, E., 2015. Production of antioxidant peptides through hydrolysis of medicinal pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties. ARYA Atheroscler, 15(5), pp. 218-227.
Memarpoor-Yazdi, M., Asoodeh, A. and Chamani, J., 2012. A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Funct Foods, 4(1), pp.278-286.
Nemati, M., Javadian, S. R., Ovissipour, M. and Keshavarz, M. 2012. A study on the properties of alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal,18(7), pp.950-956.
Nour mohammadi, E., SadeghiMahoonak, A., Alami, M. and Ghorbani, M., 2017. Amino acid composition and antioxidative properties of hydrolysed pumpkin (Cucurbita pepo) oil cake protein. International Journal of Food Properties, 20(12), pp.3244–3255.
Ogunwolu, S.O., Henshaw, O.F., Mock, H.P. and Santros, A., 2009. Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale) nut. Food Chemistry,115, pp. 852-658.
Rabiei, S., Rezaei, M., Asgharzade, S., Nikoo, M. and Rafieian-Kopaei, M., 2019. Antioxidant and cytotoxic properties of protein hydrolysates obtained from enzymatic hydrolysis of Klunzinger’s mullet (Liza klunzingeri) muscle. Brazilian Journal of Pharmaceutical Sciences,55, pp.1-10.
Ramkisson, A.,Shanece, D., Depika, S., Venter, S .and Mellem, J. 2020. In vitro anticancer and antioxidant potential of Amaranthus cruentus protein and its hydrolysates. Journal of Food Science and Technology, 40 (2), pp.634-639.
Samaei, S., Ghorbani, M., Sadeghi Mahoonak, A. and Aalami, M., 2020. Antioxidant Activity of Faba Bean (Vicia Faba) Proteins Hydrolysates Produced by Alcalase and Trypsin, Research and Innovation in Food Science and Technology, 9(1), pp.1-10.
Shahidi, F. and Onodenalore, A.,1995. Water dispersions of Myofibrillar Proteins from Capelin (Mallotus villosus). Food Chemistry, 53, pp. 51-54.
Slizyte, R., Mozuraitytė, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M. and Rustad, T., 2009. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (gadus morhua) Backbones. Process Biochemistry, 44, pp.668-677.
Taheri, A. and Bakhshizadeh, A.,2020Antioxidant and ACE Inhibitory Activities of Kawakawa (Euthynnus affinis) Protein Hydrolysate Produced by Skipjack Tuna Pepsin. Journal of Aquatic Food Product Technology, 2, pp. 148-166.
Tanuja, S., Viji, P., Zynudheen, A.A. and Joshy, C.G., 2012. Composition, functional properties and antioxidative activity of hydrolysates prepared from the frame meat of striped catfish (Pangasianodon hypophthalmus). J. Biol, 14(1), pp.28–36.
Varedesara, M.S., Ariaii, P. and Hesari, J., 2021. The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Sci Nutr, 9, pp. 2180–2190.
Wouters, A.G.B., Rombouts, I., Fierens, E., Brijs, K. andDelcour, J.A., 2016. Relevance of the functional properties of enzymatic plant protein Hydrolysates in food systems. Compr Rev Food Sci Food Saf ,15, pp.786– 800.
Yaghoubzadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R. and Fattahi, E., 2020. Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate. International Journal of Peptide Research and Therapeutics, 26, pp.625–632.
Ye, N., Hu, P., Xu, S., Chen, M., Wang, S., Hong, J. and Cai, T., 2018. Preparation and characterization of antioxidant peptides from carrot seed protein. Journal of Food Quality, 22, pp. 1–9.
Zhang, J., Wen, C., Li, C., Duan, Y., Zhang, H. and Ma, H., 2019. Antioxidant Peptide Fractions Isolated from Wheat Germ Protein with Subcritical Water Extraction and Its Transport Across Caco‐2 Cells. Journal of Food Science, 84, pp. 2139- 2146.
Zhu, K.X, Zhou, H.M. and Qian, H., 2006. Antioxidant and free radicalscavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemisrty, 41, pp. 1296–1302.
_||_