Optimization of Physico-chemical Properties and Release of Microencapsulated Curcumin in Gum Mastic Biopolymer
Subject Areas :Ehsan Fayzi Karim Abadi 1 , Alireza Sadeghi Mahoonak 2 , Mohammad Ghorbani 3 , Hoda Shahiri Tabarestani 4 , Zahra Atae 5
1 - دانشجوی دکتری، گروه علوم وصنایعغذایی، دانشگاه کشاورزی و منایع طبیعیگرگان، گرگان، ایران.
2 - استاد، گروه علوم و صنایعغذایی، دانشگاه کشاورزی و منایع طبیعیگرگان، گرگان، ایران.
3 - دانشیار، گروه علوم و صنایعغذایی، دانشگاه کشاورزی و منایع طبیعیگرگان، گرگان، ایران.
4 - استادیار، گروه علوم و صنایعغذایی، دانشگاه کشاورزی و منایع طبیعیگرگان، گرگان، ایران.
5 - استادیار، گروه داروسازی، دانشگاه علوم پزشکی البرز ، کرج، ایران
Keywords:
Abstract :
Curcumin is a bioactive, lipholitic natural compound with anti-Oxidant, anti-inflammatory, anti-microbial and anti-cancer activities. Bioavailability and beneficial effects of Curcumin are restricted by its low solubility in water. Gum Mastic is a natural resin obtained from broad-leaved variety of Pistacia lentiscus. In this study Gum Mastic was modified by solvent treatment at the first. Then microparticles containing Curcumin were prepared by emulsion solvent evaporation method. Effects of 4 factors, including the type of Gum Mastic (natural/ modified), the ratio of natural and modified Gum Mastic, the Gum Mastic -Curcumin ratio (1-3) and the amount of Magnesium Stearate (10, 15 and 20% basis Gum Mastic weight) were investigated by combined statistical design in Design-Expert software. The stability, biological protection, encapsulation efficiency and loading capacity and release rate were investigated in order to determine the optimal microcapsule. The results showed that by increasing the ratio of Gum Mastic to Curcumin, the of modified Gum Mastic ratio and decreasing the amount of Magnesium Stearate, the encapsulation efficiency and loading capacity were increased and encapsulated Curcumin loss percent was decreased after 14 and 30 days. Optimal microcapsule was obtained with the ratio of gum mastic to curcumin 3:1, the proportion of modified mastic gum 100% and magnesium stearate 10%.
1. میرپور ف . ۱۳94. غنیسازی شربت گلاب به عنوان یکنوشیدنیسنتیگیاهیبااستفادهازکوئرستین و کورکومین نانو درون پوشانی شده. پایان نامه کارشناسی ارشد. گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز.
2. Aggarwal B. B, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease. 2007; 1-75.
3. Boostani S, Jafari S. M. A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends in Food Science & Technology. 2021; 109: 303-321.
4. Burešová I, Salek R. N, Varga E, Masaříková L, Bureš D. The effect of Chios mastic gum addition on the characteristics of rice dough and bread. LWT-Food science and Technology. 2017; 81:299-305.
5. Deshpande R. D, Gowda D. V, Mahammed N. Design of Pistacia lentiscus (mastic gum) controlled release spheroids and investigating the influence of roll compaction. Industrial Crops and Products. 2013; 44:603-610.
6. Ghaderi R, Sturesson C, Carlfors J. Effect of preparative parameters on the characteristics of poly d, l-lactide-co-glycolide) microspheres made by the double emulsion method. International journal of pharmaceutics. 1996; 141(1-2): 205-216.
7. Hasan M, Elkhoury K, Kahn C. J, Arab-Tehrany E, Linder M. Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments. Molecules. 2019; 24(10): 2023.
8. Hazan Z, Lucassen A. C. 2020. U.S. Patent No. 10,561,670. Washington, DC: U.S. Patent and Trademark Office.
9. Hobbs C. A, Saigo K, Koyanagi M, Hayashi S. M. Magnesium stearate, a widely-used food additive, exhibits a lack of in vitro and in vivo genotoxic potential. Toxicology Reports. 2017; 4: 554-559.
10. Jacobsen J, Christrup L. L, Jensen N. H. Medicated chewing gum: Pros and Cons. American journal of drug delivery. 2004; 2: 75-88.
11. Kakran M, Antipina M. N. Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Current Opinion in Pharmacology. 2014; 18: 47-55.
12. Karthikeyan, A., Young, K. N., Moniruzzaman M, Beyene A. M, Do K, Kalaiselvi S, Min T. 2021. Curcumin and its modified formulations on inflammatory bowel disease (IBD): The story so far and future outlook. Pharmaceutics. 2021; 13(4): 484.
13. Lin Y. H, Vasavada R. C. Studies on microencapsulation of 5-fluorouracil with poly (ortho ester) polymers. Journal of microencapsulation. 2000; 17(1):1-11.
14. Maheshwari R. K, Singh A. K, Gaddipati J, Srimal R. C. 2006. Multiple biological activities of curcumin: a short review. Life sciences. 2006; 78(18): 2081-2087.
15. Mavrakis C, Kiosseoglou V. The structural characteristics and mechanical properties of biopolymer/mastic gum microsized particles composites. Food hydrocolloids. 2008; 22(5):854-861.
16. McGee J. P, Singh M, Li X. M, Qiu H, O'hagan D. T. The encapsulation of a model protein in poly (D, L lactide-co-glycolide) microparticles of various sizes: an evaluation of process reproducibility. Journal of microencapsulation. 1997; 14(2):197-210.
17. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy. 2017; 85: 102-112.
18. Morkhade D. M. Evaluation of gum mastic (Pistacia lentiscus) as a microencapsulating and matrix forming material for sustained drug release. asian journal of pharmaceutical sciences. 2017; 12(5):424-432.
19. Mukerjee A, Vishwanatha J. K. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer research. 2009; 29(10): 3867-3875.
20. Pachi V. K, Mikropoulou E. V, Gkiouvetidis P, Siafakas K, Argyropoulou A, Angelis A, ... & Halabalaki M. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. Journal of Ethnopharmacology. 2020; 254: 112485.
21. Paraschos S, Magiatis P, Gousia P, Economou V, Sakkas H, Papadopoulou C, Skaltsounis A. L. Chemical investigation and antimicrobial properties of mastic water and its major constituents. Food chemistry. 2011; 129(3), 907-911.
22. Revathy S, Elumalai S, Antony M. B. Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. Journal of Experimental sciences. 2011; 2(7).
23. Schoina V, Terpou A, Bosnea L, Kanellaki M, Nigam P. S. Entrapment of Lactobacillus casei ATCC393 in the viscus matrix of Pistacia terebinthus resin for functional myzithra cheese manufacture. LWT. 2018; 89: 441-448.
24. Strimpakos A. S, Sharma R. A. 2008. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxidants & redox signaling. 2008; 10(3):511-546.
25. Tan C, Mc Clements D. J. Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods. 2021; 10(4):812.
26. Thanpitcha T, Sirivat A, Jamieson A. M, Rujiravanit, R. Preparation and characterization of polyaniline/chitosan blend film. Carbohydrate polymers. 2006; 64(4): 560-568.
27. Xynos N, Termentzi A, Fokialakis N, Skaltsounis L. A, Aligiannis N. Supercritical CO2 extraction of mastic gum and chemical characterization of bioactive fractions using LC-HRMS/MS and GC–MS. The Journal of Supercritical Fluids. 2018; 133: 349-356.
28. Yan C, Resau J. H, Hewetson J, West M, Rill W. L, Kende M. Characterization and morphological analysis of protein-loaded poly (lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. Journal of Controlled Release. 1994; 32(3): 231-241.
29. Zandi M, Mohebbi M, Varidi M, Ramezanian N. Evaluation of diacetyl encapsulated alginate–whey protein microspheres release kinetics and mechanism at simulated mouth conditions. Food research international. 2014; 56: 211-217.
30. Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate polymers. 2020; 242: 116388.