شناسایی مشخصههای انواع تحقیق و توسعه درهوش مصنوعی با رویکرد سیاستگذاری
محورهای موضوعی : مدیریت بازرگانی- بازرگانیصالح آچاک 1 , عباس طلوعی اشلقی 2 * , رضا رادفر 3 , عباس خمسه 4
1 - دانشجوی دکتری مدیریت تکنولوژی گرایش مدیریت تحقیق و توسعه، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران
2 - استاد تمام دانشگاه آزاد اسلامی واحد علوم و تحقیقات
3 - استاد گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشیار گروه مدیریت صنعتی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
کلید واژه: واژگان کلیدی: تحقیق, توسعه, هوش مصنوعی, انواع تحقیق و توسعه, سیاستگذاری,
چکیده مقاله :
دستیابی به فناوری هوش مصنوعی نیازمند طیف گستردهای از فعالیتهای تحقیق و توسعه است که هر کدام دارای مشخصه و ویژگیهای متفاوتی است. هدف این مقاله شناسایی مشخصههای انواع تحقیق و توسعه در هوش مصنوعی است. این پژوهش با رویکرد ترکیبی (کیفی- کمی) انجام گرفت که در بخش کیفی آن ضمن مطالعه و مرور منظم مبانی نظری و ادبیات تحقیق و توسعه در هوش مصنوعی، ویژگیهای آن به روش تحلیل محتوی استخراج گردید. سپس به منظور تعیین مصداقها و جزئیات هر ویژگی با 10 نفر از خبرگان دانشگاهی و مدیران آشنا به فرآیند تحقیق و توسعه در هوش مصنوعی مصاحبه انجام گرفت. در بخش کمی، به منظور اعتبار بخشی به یافتههای کیفی، پرسشنامهای براساس مقیاس لیکرت هفت درجهای فازی تهیه و نظرات کارشناسان در مورد ویژگیهای احصاشده جمعآوری گردید. دادههای جمعآوریشده از پرسشنامهها در دو دور، طبق فرآیند دلفی فازی، غربال و نهایی شد. یافتههای این تحقیق با هدف سیاستگذاری در تحقیق و توسعه شامل 8 مشخصه مجزا عبارتند از: جستجوی زمینه پژوهش، هدف عامل انجام پژوهش، خروجی مورد انتظار، معیار عملکرد، افق زمانی، تکنیکها و روشها، صلاحیتها و مهارتهای محققین، و اندازه تلاش پژوهشی.
References
Agrawal, A., Gans, J., & Goldfarb, A. (Eds.). (2019). The Economics of Artificial Intelligence: An Agenda. University of Chicago Press.
Agrafioti, Foteini (2018), How to Set Up an AI R&D Lab, RBC.
Alinaghian A., Safdari Ranjbar M., Mohammadi, M (2022), Designing a policy package for developing Artificial Intelligence in Iran, Iranian Journal of Public policy [In Persian].
Amsden Alice H., F. Ted Tschang (2003). A new approach to assessing the technological complexity of different categories of R&D (with examples from Singapore), Research policy.
Baird, A., & Maruping, L. M. (2021). The Next Generation of Research on IS Use: A Theoretical Framework of Delegation to and from Agentic IS Artifacts. MIS Quarterly, 45(1), 315-341. https://doi.org/ 10.25300/MISQ/2021/15882
Balakrishnan, T., Chui, M., Hall, B., & Henke, N. (2020). The State of AI in 2020. McKinsey. Retrieved April 19 from https://www.mckinsey.com/business-functions/mckinsey-analytics/ourinsights/global-survey-the-state-of-ai-in-2020
Berente N., Gu B, Recker J., Santanam R. (2021). Managing Artificial Intelligence, Journal of MIS quarterly. Vol 45, No 3, 2021, doi: 10.25300/MISQ/2021/16274
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Brynjolfsson, E., & Mitchell, T. (2017). What Can Machine Learning Do? Workforce Implications. Science, 358(6370), 1530-1534.
Bughin, Jacques, Hazan, Eric, Ramaswamy, Sree, Chui, Michael, Allas, Tera, Dahlström, Peter, Henke, Nicholaus, and Trench, Monica (2017), “Artificial Intelligence: The Next Digital Frontier?” (McKinsey Global Institute, June 2017).
Castelvecchi, D. (2016). Can we open the black box of AI? Nature, 538(7623), 20-23. https://doi.org/10.1038/538020a
Chen, H., Chiang, R., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impacts. MIS Quarterly, 36(4), 1165-1188.
Davenport, T. H., & Kirby, J. (2015). Beyond Automation. Harvard Business Review, 93(6), 58-65.
Daniel Zhang, Nestor Maslej, Erik Brynjolfsson, John Etchemendy, Terah Lyons, James Manyika, Helen Ngo, Juan Carlos Niebles, Michael Sellitto, Ellie Sakhaee, Yoav Shoham, Jack Clark, and Raymond Perrault, “The AI Index 2022 Annual Report,” AI Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford University, March 2022
Eggers, W. Mendelson, T. Chew, B. Kishnani, P. K. K. (2021). Crafting an AI strategy for government leaders, Deloitte insight
IBM Research | Tokyo, (2020). What is next in AI? IBM. http://www.research.ibm.com/labs/tokyo/
Information and Communication Research Center (2020), Research Report on road map of AI development, Innovation and development center for Artificial Intelligence.
Giulio Ferrigno, Antonio Crupi, Alberto Di Minin and Paavo Ritala; 50+ years of R&D Management: a retrospective synthesis and new research trajectories, (2023), R&D Management published by RADMA and John Wiley & Sons Ltd.
Glikson, E., & Woolley, A. W. (2020). Human Trust in Artificial Intelligence: Review of Empirical Research. Academy of Management Annals, 14(2), 627-660. https://doi.org/10.5465/annals.2018.0057
Habibi, A., Jahantigh, F. F., & Sarafrazi, A. (2015). Fuzzy Delphi Technique for Forecasting and Screening Items. Asian Journal of Research in Business Economics and Management, 5(2), 130-143.
Heston, Roxanne and Zwetsloot, Remco (2021), Mapping U.S. Multinationals’ Global AI R&D Activity, CEST.
Human-Centered Artificial Intelligence (2022), Artificial intelligence Index report 2022, Stanford University.
Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at Work: The New Contested Terrain of Control. Academy of Management Annals, 14(1), 366-410. https://doi.org/10.5465/annals.2018.0174
Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences. Sage
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436.
Lyytinen, K., Nickerson, J. V., & King, J. L. (2021). Metahuman Systems = Humans + Machines That Learn. Journal of Information Technology, forthcoming. https://doi.org/10.1177/0268396220915917
Mc Corduck, P. (2004). Machines Who Think (2nd ed.). Taylor & Francis.
M. Dissanayake. (2016). Basic and applied scientific research, innovation and economic development. In Ceylon Journal of Science (Vol. 45, p. 1). https://doi.org/10.4038/CJS.V45I1.7368
Meyer, B. (2011). John McCarthy. ACM. Retrieved April 27 from https://cacm.acm.org/blogs/blogcacm/138907-john-mccarthy/fulltext
Metcalf, L., Askay, D. A., & Rosenberg, L. B. (2019). Keeping Humans in the Loop: Pooling Knowledge through Artificial Swarm Intelligence to Improve Business Decision Making. California Management Review, 61(4), 84-109. https://doi.org/10.1177/0008125619862256
NSTC (2016), Preparing for the Future of Artificial Intelligence. National science and Technology Council.
OECD (2015): Frascati manual 2015. Guidelines for collecting and reporting data on research and experimental development. Paris: OECD (The measurement of scientific, technological and innovation activities).
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, A., Roberts, M. E., Shariff, A., Tenenbaum, J. B., & Wellman, M. P. (2019). Machine Behaviour. Nature, 568, 477486. https://doi.org/10.1038/s41586-019-1138-y
J. M. Santos, H. Horta, & H. Luna. (2022). The relationship between academics’ strategic research agendas and their preferences for basic research, applied research, or experimental development. In Scientometrics (Vol. 127, pp. 4191–4225). https://doi.org/10.1007/s11192-022-04431-5
Schilling, Melissa A; Strategic management of technological innovation,5th ed,(2017).
Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational Decision-Making Structures in the Age of Artificial Intelligence. California Management Review, 61(4), 66-83. https://doi.org/10.1177/0008125619862257
Shead (2020), “Facebook Plans To Double Size of AI Research”, Forbes
Silver, David, A.Huang, Chris J. Maddison, Guez A., Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis, (2016) “Mastering the game of Go with deep neural networks and tree search,” Nature 529: 484-89.
Skoryatina, Zavalishina. (2017). Impact of Experimental Development of Arterial Hypertension and Dyslipidemia on Intravascular Activity of Rats’ Platelets. In Annual research & review in biology (Vol. 14, pp. 1–9).
https://doi.org/10.9734/ARRB/2017/33758
Stanford University “One Hundred Year Study on Artificial Intelligence (AI100),”, accessed August 1, 2016, https://ai100.stanford.edu.
Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., Press, W., Saxenian, A. L., Shah, J., Tambe, M., & Teller, A. (2016). Artificial Intelligence and Life in 2030." One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel. http://ai100.stanford.edu/2016repor
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press. Sviokla, J. J. (1990). An Examination of the Impact of Expert Systems on the Firm: The Case of XCON MIS Quarterly, 14(2), 127-140. https://doi.org/10.2307/248770
Townsend, A. M., & Hunt, R. A. (2019). Entrepreneurial Action, Creativity, & Judgment in the Age of Artificial Intelligence. Journal of Business Venturing Insights, 11(e00126). https://doi.org/10.1016/j.jbvi.2019.e00126
UNESCO. (1982). Guide for Collecting Statistics Relating to Science and Technology Activities. Report No. 2.
U. Kamath, J. Liu, J. Whitaker (2019), Deep Learning for NLP and Speech Recognition, https://link.springer.com/
Van Duin, Stefan and Bakhshi, Naser (2018), Artificial Intelligence, Deloitte
Verstehen, W; Gestalten, Z (2018); Impulse für die Zukunft der Innovation. Fraunhofer-Verbund Innovations forschung (Ed.); Available online at: http://publica.fraunhofer.de/documents/N-491577.html
Wu, L., & Lou, B. (2021). AI on Drugs: Can Artificial Intelligence Accelerate Drug Development? Evidence from a Large-scale Examination of Bio-pharma Firms. MIS Quarterly, 45, forthcoming.
Yagnik, Jay, (2019). Google Research India: an AI lab in Bangalore, https://blog.google/around-the-globe/google-asia/google-research-india-ai-lab-bangalore/
Yang, Elvina, “Microsoft R&D Center in Taiwan Starts Recruiting for AI Research.” https://meet-global.bnext.com.tw/articles/view/42604