Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکهادی کلانی 1 , علیرضا اکبرزاده 2
1 - دانشجوی دکتری، قطب علمی رایانش نرم و پردازش هوشمند اطلاعات، دانشگاه فردوسی مشهد
2 - دانشیار، قطب علمی رایانش نرم و پردازش هوشمند اطلاعات، دانشیار، دانشگاه فردوسی مشهد.
کلید واژه: Snake-like robot, Serpentine locomotion, Kinematics, Dynamics, Serpenoid curve, NSGA Optimization,
چکیده مقاله :
This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employed to simulate the snake robot. Effects of serpenoid curve parameters on joint torques and progression of the snake robot are also investigated. Results indicate that by increasing the inclination angle of the surface, link length and numbers of links, joint torques are increased. NSGA multi optimization method is next utilized to obtain the unsymmetrical curve parameters resulting in minimum joint torques and maximum snake progression. Optimal solutions are presented in the form of Pareto front optimal. The optimization shows that the required range of parameters of snake robot's body curve for higher progression and less torque, is limited. Additionally, it is shown that by employing the unsymmetrical serpenoid curves the efficiency of snake robot can be increased. Finally, FUM-Snake I robot is employed to validate the theoretical results on a flat surface. The experimental results show that the proposed kinematics and dynamics model are reasonable.
این مقاله با مدلسازی و شبیهسازی ربات مار مانند شروع شده و با کار آزمایشی به پایان رسیده است. در ابتدا دو منحنی سرپنوید متقارن و نامتقارن برای ایجاد حرکت سرپنتین معرفی شده است. سپس معادلات سینماتیک و دینامیک یک ربات مارمانند با n عضو در حرکت سرپنتین بر روی سطوح صاف و شیبدار بهصورت ساده، جامع و کارامد ارائه و برای تأیید معادلات، از نرم افزار سیممکانیک و آزمایشهای عملی استفاده شده است. همچنین تأثیر پارامترهای منحنی سرپنوید بر روی گشتاورهای مورد نیاز مفاصل و پیشروی ربات مورد مطالعه قرار گرفتهاست. نتایج نشان میدهد که با افزایش زاویه سطح شیبدار، کاهش زاویه پیچش اولیه، کاهش تعداد نوسانات (یا تعداد موجهای منحنی بدن)، افزایش طول عضوها و افزایش تعداد آن، گشتاور مورد نیاز افزایش مییابد. برای بهینهسازی پارامترهای منحنی سرپنوید نامتقارن، از الگوریتم بهینهسازی چندهدفی NSGA، برای ارضای همزمان دو هدف (یعنی حداقل گشتاور مورد نیاز و بیشترین پیشروی) استفاده شده است. طبق نتایج دامنه تغییرات پارامترهای منحنی بدن ربات مارمانند، برای رسیدن به بیشترین پیشروی و کمترین گشتاور، محدود است. به کمک منحنی سرپنوید نامتقارن میتوان به منحنیهایی که به بدن مار شبیهتر باشند، دست یافت و عملکرد ربات مارمانند را افزایش داد. در پایان از ربات مارمانند FUM-Snake I برای آزمایش و تصدیق معادلات بر روی سطح صاف استفاده شده است.
[1] Hirose S., Biologically Inspired Robots (Snake-like Locomotor and Manipulator), Oxford University Press ,1993.
[2] Saito M., Fukaya M., Iwasaki T.,Serpentine locomotion with robotic snakes, IEEE Control Systems Magazine, Vol. 22, 2002, pp. 64–81.
[3] Andreas Transeth A., Modelling and Control of Snake Robots, Ph.D. Dissertation, Trondheim, 2007.
[4] Andreas Transeth A., Ytterstad Pettersen K., Liljebäck P., A survey on snake robot modeling and locomotion, Robotica, Vol. 27, ,2009, pp. 999–1015 .
[5] Vossoughi Gh., Pendar Ho., Heidari Z., Mohammadi S., Assisted passive snake-like robots: conception and dynamic modeling using Gibbs–Appell method, Robotica, Vol. 26, 2008, pp. 267–276.
[6] Spranklin B. W., Design, Analysis and fabrication of a snake- inspired robot with a rectilinear gait, Master of Science Thesis, University of Maryland,2006.
[7] Liljebäck P., Stavdahl O., Pettersen K. Y., Modular pneumatic snake robot: 3D modelling, implementation and control, Proc. 16th IFAC World Congress, Prague, Czech Republic ,2005.
[8] Ye Ch., Ma Sh., Li B., Development of a 3D Snake-like Robot Perambulator-II: Design and Basic Experiments, Proc. 2007 IEEE Int. Conf. on Intelligent Mechatronics and Automation (ICMA2007), 2007.8, pp. 117-122, Harbin, Heilongjiang, China.
[9] Crespi A. , Ijspeert A. J., Online Optimization of Swimming and Crawling in an Amphibious Snake Robot, IEEE Transactions of Robotics, Vol. 24, No. 1, 2008.
[10] Hasanzadeh Sh., Akbarzadeh A., Ground adaptive and optimized locomotion of snake robot moving with a novel gait, Auton Robot. Vol. 28, 2010, pp. 457–470.
[11] Hasanzadeh Sh., Akbarzadeh Tootoonchi A., Adaptive Optimal Locomotion of Snake Robot Based on CPG-Network Using Fuzzy Logic Tuner, IEEE - CIS RAM,2008 , 2008-09-22.
[12] Kalani H., Akbarzadeh A., Design and Modeling of a Snake Robot Based on Worm-Like Locomotion, Accepted, Advance Robotics.
[13] Kalani H., Akbarzadeh A., Safehian J., Traveling Wave Locomotion of Snake Robot along Symmetrical and Unsymmetrical body shapes, ISR-Robotik, Munich, Germany,2010.
[14] Safehian J., kalani H., Akbarzadeh A., A Novel Kinematics Modeling Method for Snake Robot in Traveling wave Locomotion, ASME, Turkish ,2010.
[15] Horn J., Nafpliotis N., Goldberg D., A niched pareto genetic algorithm for multiobjective optimization, NJ:IEEE World Congress on Computational Intelligence, IEEE, 1994, p. 82–7.
[16] Fonseca C.M., Fleming P.J., Genetic algorithms for multiobjective optimization: formulation, discussion and generalization , Proceedings of the fifth international conference on genetic algorithms, San Mateo California, 1993, pp. 416–23.
[17] Deb K., Agarwal S., Pratap A., Meyarivan T., A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II., KanGAL report number 2001. Kanpur, India: Indian Institute of Technology; 2000.
[18] Deb K., Agarwal S., Pratap A., Meyarivan T., A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II., Proceedings of the parallel problem solving from nature VI conference, Paris, France. 2000, pp. 849–58.
[19] Schaffer J., Multiple objective optimization with vector evaluated genetic algorithms. Genetic algorithms and their applications, proceedings of the first international conference on genetic algorithms. Hillsdale, NJ. 1985. pp. 93–100.
[20] Srinivas, Deb A. , Multiobjective optimization using nondominated sorting in genetic algorithms,. Journal Evol. Comput., Vol. 2(3):, 1994 , pp. 221–48 1994.
[21] Eckart Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph.D. thesis, Swiss Federal Institute of Technology Zurich, 1999.
[22] Kalani H., Akbarzadeh A., Bahrami H., Application of Statistical Techniques in Modeling and Optimization of a Snake Robot, Robotica, published online: November 2012 , pp.1–19 .