Effect of Zedo and Almond Gums as Fat Replacers on Flow Behavior and Organoleptic Characteristics of Vanilla Low-Fat Dairy Dessert
Subject Areas : MicrobiologyH. Jooyandeh 1 * , H. Rostamabadi 2 , M. Goudarzi 3
1 - Associate Professor of the Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran.
2 - M. Sc. of the Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran.
3 - دانشآموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده مهندسی بیوسیستم، دانشگاه تهران، کرج، ایران
Keywords: Almond Gum, Flow Behavior, Low-Fat Dairy Dessert, Organoleptic Properties, Zedo Gum,
Abstract :
Introduction: Employing fat-replacers for development of low-fat food formulations is of growing interest because of consumers’ desire for healthy eating. The present study was aimed to investigate the possibility of using Zedo and almond gums as fat replacers for developing a vanilla low-fat dairy dessert. Materials and Methods: Effect of different levels of Zedo or almond gums (0.1, 0.2 & 0.3% w/w) on flow behavior and organoleptic characteristics of vanilla low-fat dairy dessert was studied in comparison to those of full-fat control sample. Results: The flow behavior of the dairy desserts fitted well to the Ostwald de Waele model (R2>0.99). All the samples exhibited shear-thinning flow behavior; however, fat reduction significantly resulted in decreased apparent viscosity and consistency index and increased flow index. Zedo and almond gums both caused an increase in the consistency index and favored the shear-thinning behavior of the low-fat dairy dessert as the flow index approached zero. The low-fat dairy desserts incorporated with 0.2% Zedo gum or 0.3% almond gum did not significantly differ from full-fat control in terms of flow behavior characteristics. The low-fat dairy dessert containing 0.3% Zedo gum, despite showing stronger shear-thinning behavior, was less appreciated than full-fat control. Conclusion: It was shown that by using 0.2% Zedo or 0.3% almond gum, it is possible to develop a low-fat dairy dessert with desired rheological and organoleptical properties.
نبیزاده، ف.، خسروشاهی اصل، ا. و زمردی، ش. (1392). مطالعه تأثیر استفاده از پرمیت حاصل از تغلیظ شیر به روش اولترافیلترلسیون و صمغ زدو بر ویژگیهای کیفی دوغ. نشریه پژوهشهای صنایع غذایی، جلد 23 ، شماره 4، 567-580.
Abbasi, S. & Mohammadi, S. (2013). Stabilization of milk–orange juice mixture using Persian gum: Efficiency and mechanism. Food Bioscience, 2, 53-60.
Arcia, P. L., Costell, E. & Tárrega, A. (2010). Thickness suitability of prebiotic dairy desserts: Relationship with rheological properties. Food Research International, 43, 2409–2416.
Arcia, P. L., Costell, E. & Tárrega, A. (2011). Inulin blend as prebiotic and fat replacer in dairy desserts: optimization by response surface methodology. Journal of Dairy Science, 94(5), 2192-2200.
Bayarri, S., Chulia, I. & Costell, E. (2010). Comparing λ-carrageenan and an inulin blend as fat replacers in carboxymethyl cellulose dairy desserts. Rheological and sensory aspects. Food Hydrocolloids, 24(6), 578-587.
Bayarri, S., González-Tomás, L., Hernando, I., Lluch, A. & Costell, E. (2011). Texture perceived on inulin-enriched low-fat semisolid dairy desserts. Rheological and structural basis. Journal of Texture Studies, 42, 174-184.
Doublier, J. L. & Durand, S. (2008). A rheological characterization of semi-solid dairy systems. Food Chemistry, 108, 1169–1175.
Ghasempour, Z., Alizadeh, M. & Bari, M. R. (2012). Optimization of probiotic yoghurt production containing Zedo gum. International Journal of Dairy Technology, 65(1), 118-125.
Glicksman, M. (1982). Food Hydrocolloids. Boca Raton, Florida: CRC Press Inc., pp. 68–75.
González-Tomás, L., Bayarri, S., Taylor, A. J. & Costell, E. (2008). Rheology, flavour release and perception of low-fat dairy desserts. International Dairy Journal, 18(8), 858-866.
González-Tomás, L. & Costell E. (2006). Relation between consumers’ perceptions of color and texture of dairy desserts and instrumental measurements using a generalized procrustes analysis. Journal of Dairy Science, 89, 4511-4519.
Goudarzi, M., Madadlou, A., Mousavi, M. E. & Emam‐Djomeh, Z. (2015). Formulation of apple juice beverages containing whey protein isolate or whey protein hydrolysate based on sensory and physicochemical analysis. International Journal of Dairy Technology, 68(1), 70-78.
Khalesi, H., Emadzadeh, B., Kadkhodaee, R. & Fang, Y. (2015). Whey protein isolate-Persian gum interaction at neutral pH. Food Hydrocolloids, 1-5.
Mahfoudhi, N., Chouaibi, M., Donsì, F.,
Ferrari, G. & Hamdi, S. (2012). Chemical composition and functional properties of gum exudates from the trunk of the almond tree (Prunus dulcis). Food Science and Technology International, 18(3), 241-250.
Mahfoudhi, N., Sessa, M., Chouaibi, M., Ferrari, G., Donsì, F. & Hamdi, S. (2014). Assessment of emulsifying ability of almond gum in comparison with gum arabic using response surface methodology. Food Hydrocolloids, 37, 49-59..
Rahimi, J., Khosrowshahi, A., Madadlou, A. & Aziznia, S. (2007). Texture of low-fat Iranian white cheese as influenced by gum tragacanth as a fat replacer. Journal of Dairy Science, 90, 4058–4070.
Sopade P. A. & Kassum A. L. (1992). Rheological characterization of akamu a semi-fluid food From maize millet and sorghum. Journal of Cereal Science, 15, 193-202.
Tárrega, A., Durán, L. & Costell, E. (2004). Flow behavior of semi-solid dairy desserts. Effect of temperature. International Dairy Journal, 14(4), 345-353.
Tárrega, A., Durán, L. & Costell, E. (2005). Rheological characterization of semisolid dairy desserts. Effect of temperature. Food Hydrocolloids, 19(1), 133-139.
Tárrega, A. & Costell, E. (2006a). Effect of composition on the rheological behavior and sensory properties of semisolid dairy desserts. Food Hydrocolloids, 20, 914-922.
Tárrega, A. & Costell, E. (2006b). Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts. International Dairy Journal, 16(9), 1104-1112.
Tárrega, A. & Costell, E. (2007). Colour and consistency of semi-solid dairy desserts: Instrumental and sensory measurements. Journal of Food Engineering, 78(2), 655-661.
Tárrega, A., Torres, J. D. & Costell, E. (2011). Influence of the chain-length distribution of inulin on the rheology and
desserts. Journal of Food Engineering, 104(3), 356-363.
Toker, O. S., Dogan, M., Canıyılmaz, E., Ersöz, N. B. & Kaya, Y. (2013). The effects of different gums and their interactions on the rheological properties of a dairy dessert: a mixture design approach. Food and Bioprocess Technology, 6(4), 896-908.
Velez-Ruiz, J. F., Gonzalez-Tomas, L. & Costell, E. (2005). Rheology of dairy custard model systems: Influence of milk-fat and hydrocolloid type. European Food Research and Technology, 221, 342–347.
_||_