Phytochemical and antioxidant activity of some of Morus alba L. Var. Nigra genotypes in West and East Azerbaijan province
Subject Areas :
Biochemistry
Sakineh Moradkhani
1
1 - Department of Biology, Faculty of Science, Payame Noor University (Khoy Center), Iran
Received: 2022-01-27
Accepted : 2022-08-09
Published : 2022-11-27
Keywords:
DPPH,
Anthocyanins,
antioxidants,
Polyphenols,
soluble sugar,
Mulberries,
Abstract :
Blackberry (Morus alba L. Var. Nigra) has phytochemical compounds and antioxidant activity. In the present study, the fruits of four blackberry genotypes were harvested from two West and East Azerbaijan in mid-July 2017. Phytochemical indices were evaluated based on the content of total phenol (folate sizing method), total anthocyanin and antioxidant activity (DPPH). To separate, identify and determine the amount of phenolic acids and sugars a high-performance liquid chromatography device (HPLC) was used. Data analysis was performed by Duncan's multiple range test at the probability level of 1%. According to the variance analysis results, the measured traits were significant at the level of 1% and a high diversity was observed among the measured traits. The highest amount of antioxidants was 78.04 %, total anthocyanin and total phenol were 6.24 mg/ml and 925.98 mg/100 g fresh weight equivalent to gallic acid, respectively. In the current study, 9 polyphenolic compounds were identified in the fruit extract by HPLC. The main constituents included chlorogenic acid (60.060), coumaric acid (8.807) and caffeic acid (3.657) microgram per gram. In addition, in extracts, cinnamic acid (0.355), rosemary acid (0.055), gallic acid (2.59), rutin (0.833), apagenin (2.700), quercetin (1.861) microgram per gram were identified and also two sugars of fructose (5.84) and glucose (6.31) g per 100 g of fresh weight were reported. The results showed that in all genotypes, glucose was higher than fructose. The first genotype with the highest amount of antioxidant capacity, fructose, total phenol, caffeic acid, chlorogenic acid, quercetin and apagenin was introduced as the superior breed. The findings of this study is useful for understanding the diversity and efforts to select berries for breeding as well as for the food industry in selecting cultivars with high nutritional properties.
References:
Alam, M.S., Kaur, G., Jabbar, Z., Javed, K. and Athar, M. 2007. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food and chemical toxicology, 45(6): 910- 920.
Basiri, S. 2017. Determination of some of physico-chemicalthe properties and suitable storage time of concentrated mulberry in Khorasan region. Iranian Journal of food science and technology, 14(66): 175-186.
Bridle, P. and Timberlake, C.F. 1978. Anthocyanins as natural food colours-selected aspects. Food Chemistry, 58: 103-109.
Chen, H., Chen, J., Yang, H., Chen, W., Gao, H. and Lu, W. 2016. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus) cultivars in China. Scientia Horticulturae, 213: 186-192.
Chen, T., Shuang, F.F., Fu, Q.Y., Ju, Y.X., Zong, C.M., Zhao, W.G., Zhang, D.Y., Yao, X.H. and Cao, L. 2022. Evaluation of the chemical composition and antioxidant activity of mulberry (Morus alba L.) fruits from different varieties in China. Molecules, 27(9): 2688.
Dai, M., Kang, X., Wang, Y., Huang, S., Guo, Y., Wang, R., Chao, N. and Liu, L. 2022. Functional characterization of flavanone 3-hydroxylase (f3h) and its role in anthocyanin and flavonoid biosynthesis in mulberry. Molecules, 27(10): 3341.
Deshmukh, S.R., Wadegaonkar, V.P., Bhagat, R.P. and Wadegaonkar, P.A. 2011. Tissue specific expression of anthraquinones, flavonoids and phenolics in leaf, fruit and root suspension cultures of Indian mulberry (Morinda citrifola). Plant Omics Journal, 4: 6-13.
Du, G., Li, M., Ma, F. and Liang, D. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113: 557-562.
Elhamirad, A. 2013. Optimization of juice clarification of two native white mulberry (Morus alba) varieties. Innovation in food science and technology (Journal of food science and technology), 5(1): 91-103.
Fanoodi, M., Hosseini-Vashan, S.J., Mojtahedi, M. and Raji, A.R. 2021. Effect of dried surplus white mulberries and multi-enzyme on growth performance. Blood Biochemical Indices and Intestinal Morphology of Broiler Chickens. rap, 12(34): 40-5.
Farahani, M., Salehi-Arjmand, H., Khadivi, A. and Akramian, M. 2019. Chemical characterization and antioxidant activities of Morus alba nigra fruits. Scientia Horticulturae, 253: 120–127.
Fattahi, J., Hamidoghli, Y., Fotouhi, R., Ghasemnejad, M. and Bakhshi, D. 2011. Evaluation of physicochemical properties and antioxidant activity of the peel of different commercial Citrus Journal of Horticulture Science, 25(2): 211-217.
Firoz barandozi, S. and Hassanpour, H. 2020. Investigation of physicochemical characteristics and fruit color of some white mulberry (Morus alba) Genotypes in West Azerbaijan province of Iran. Journal of crop production and processing, 9(4): 145-158.
García-Alonso, M., Pascual-Teresa, S., Santos Buelga, C. and Rivas-Gonzalo, J.C. 2004. Evaluation of the antioxidant properties of fruits. Food Chemistry, 84: 13-18.
Gerasopoulos, D. and Stavroulakis, G. 1997. Quality characteristics of four Mulberry (Morus) cultivars in the area of Chania Greece. Journal of the Science of Food and Agriculture, 73: 261-264.
Giusti, M.M. and Wrolstad, R.E. 2001. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, 47: 777-780.
Gundogdu, M., Muradoglu, F., Sensoy, R.I.G. and Yilmaz, H. 2011. Determination of fruit chemical properties of Morus nigra, Morus alba L. and Morus rubra L. by HPLC. Scientia Horticulturae, 132: 37–41.
Guo, F.D., Wang, X.Z., Liu, X.Y., Han, X. and Wang, X.J. 2011. Metabolic regulation of plants anthocyanin. Chin. Bull. Life Sci., 23: 938–944.
Hassanpour, H. and Alizadeh, S. 2016. Evaluation of phenolic compound, antioxidant activities and antioxidant enzymes of barberry genotypes in Iran. Scientia Horticulturae, 200: 125–130.
Hosseini, A.S., Akramian, M., Khadivi, A. and Salehi-Arjmand, H. 2018. Phenotypic and
chemical variation of black Mulberry (Morus nigra) genotypes. Ind. Crops. Prod., 117: 260–271.
Imran, M., Khan, H., Shah, M., Khan, R. and Khan, F. 2010. Chemical composition and antioxidant activity of certain Morus Journal of Zhejiang University science B, 11(12): 973–980.
Jiang, Y. and Nie, W.J. 2015. Chemical properties in fruits of mulberry species from the
Xinjiang province of China. Food Chem. 174: 460–466.
Jun, H., Kim, Y. and Kim, Y. 2014. Antioxidant activities of Rubus coreanus Miquel and Morus alba Fruits. J Korean Soc Food Sci Nutr, 43(3): 381-388.
Krishna, H., Singh, D., Singh, R.S., Kumar, L., Sharma, B.D. and Saroj, P.L. 2018. Morphological and antioxidant characteristics of Mulberry (Morus) genotypes. Journal of the Saudi Society of Agricultural Sciences, 19(2): 136-145.
Liang, L., Zhu, M., Li, F., Yang, L., Wu, X., Zhao, W. and Zou, Y. 2012. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacognosy Magazine, 8(31): 215.
Mahmood, T., Anwar, F., Afzal, N., Kausar, R., Ilyas, S. and Shoaib, M. 2017. Influence of ripening stages and drying methods on polyphenolic content and antioxidant activities of Mulberry fruits. J. Food Meas. Charact., 11 (4): 2171–2179.
Makhoul, G., Mahfoud, H. and Baroudi, H. 2017. Some chemical characteristics of white (Morus Alba) and black (Morus Nigra L.) mulberry phenotypes in Tartus Syria. SSRG International Journal of Agriculture & Environmental Science, 4(2): 53-62.
Nakajima, J.I., Tanaka, I., Seo, S., Yamazaki, M. and Saito, K. 2004. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. Journal of Biomedicine and Biotechnology, 5: 241–247.
Nikkhah, E., Khayami, M. and Heydari, R. 2009. Evaluation of nitric oxide scavenging activity of anthocyanins from black berry (Morus Nigra), strawberry (Fragaria Vesca L.) and berry (Morus Alba L. var. Nigra) extracts. Iranian journal of medicinal and aromatic plants, 25(1): 120-128.
Özgen, M., Serçe, S. and Kaya, C. 2009. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra Scientia Horticulturae, 119: 275-279.
Parsons, B. 2017. Antioxidants in food: the significance of characterisation, identification, chemical and biological assays in determining the role of antioxidants in food. Foods, 6(8): 68.
Parvizi, V., Shirzad, H., Alirezalou, A. and Rahmanzadeh Ishkeh, Sh. 2019. Effect of chitosan nano-emulsion and fennel essential oil on antioxidant activity and biochemical contents of black mulberry (Morus nigra L.). Pomology Research, 5(1):1-15.
Ramappa, V.K., Srivastava, D., Singh, P., Kumar, U., Kumar, D., Gosipatala, S.B., Saha, S., Kumar, D. and Raj, R. 2020. Mulberries: a promising fruit for phytochemicals, nutraceuticals, and biological activities. Int. J. Fruit Sci., 20: S1254-S1279.
Sabeti, H. 2008. Forests, trees and shrubs of Iran. Yazd university press, Yazd, 854 p.
Seal, T. 2016. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of north-eastern region in India. Journal of Applied Pharmaceutical Science, 6: 157-166
Shah, M.A., Bosco, S.J.D. and Mir, S.A. 2014. Plant extracts as natural antioxidants in meat and meat products. Meat science, 98(1): 21-33.
Smith, M., Marley, K., Seigler, D., Singletary, K. and Meline, B. 2000. Bioactive properties of wild blueberry fruits. Journal of Food Science, 65: 352-356.
Xiaomin, G., Qi, H. and Zhiling, M. 2020. Differences of sugar components in different mulberry cultivars during its ripening. IOP Conference Series: Earth and Environmental Science, 446: 032058.
Zadernowski, R., Naczk, M. and Nesterowicz, J. 2005. Phenolic acid profiles in some small berries. J. Agric. Food Chem., 53(6): 2118-2124.
_||_
Alam, M.S., Kaur, G., Jabbar, Z., Javed, K. and Athar, M. 2007. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food and chemical toxicology, 45(6): 910- 920.
Basiri, S. 2017. Determination of some of physico-chemicalthe properties and suitable storage time of concentrated mulberry in Khorasan region. Iranian Journal of food science and technology, 14(66): 175-186.
Bridle, P. and Timberlake, C.F. 1978. Anthocyanins as natural food colours-selected aspects. Food Chemistry, 58: 103-109.
Chen, H., Chen, J., Yang, H., Chen, W., Gao, H. and Lu, W. 2016. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus) cultivars in China. Scientia Horticulturae, 213: 186-192.
Chen, T., Shuang, F.F., Fu, Q.Y., Ju, Y.X., Zong, C.M., Zhao, W.G., Zhang, D.Y., Yao, X.H. and Cao, L. 2022. Evaluation of the chemical composition and antioxidant activity of mulberry (Morus alba L.) fruits from different varieties in China. Molecules, 27(9): 2688.
Dai, M., Kang, X., Wang, Y., Huang, S., Guo, Y., Wang, R., Chao, N. and Liu, L. 2022. Functional characterization of flavanone 3-hydroxylase (f3h) and its role in anthocyanin and flavonoid biosynthesis in mulberry. Molecules, 27(10): 3341.
Deshmukh, S.R., Wadegaonkar, V.P., Bhagat, R.P. and Wadegaonkar, P.A. 2011. Tissue specific expression of anthraquinones, flavonoids and phenolics in leaf, fruit and root suspension cultures of Indian mulberry (Morinda citrifola). Plant Omics Journal, 4: 6-13.
Du, G., Li, M., Ma, F. and Liang, D. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113: 557-562.
Elhamirad, A. 2013. Optimization of juice clarification of two native white mulberry (Morus alba) varieties. Innovation in food science and technology (Journal of food science and technology), 5(1): 91-103.
Fanoodi, M., Hosseini-Vashan, S.J., Mojtahedi, M. and Raji, A.R. 2021. Effect of dried surplus white mulberries and multi-enzyme on growth performance. Blood Biochemical Indices and Intestinal Morphology of Broiler Chickens. rap, 12(34): 40-5.
Farahani, M., Salehi-Arjmand, H., Khadivi, A. and Akramian, M. 2019. Chemical characterization and antioxidant activities of Morus alba nigra fruits. Scientia Horticulturae, 253: 120–127.
Fattahi, J., Hamidoghli, Y., Fotouhi, R., Ghasemnejad, M. and Bakhshi, D. 2011. Evaluation of physicochemical properties and antioxidant activity of the peel of different commercial Citrus Journal of Horticulture Science, 25(2): 211-217.
Firoz barandozi, S. and Hassanpour, H. 2020. Investigation of physicochemical characteristics and fruit color of some white mulberry (Morus alba) Genotypes in West Azerbaijan province of Iran. Journal of crop production and processing, 9(4): 145-158.
García-Alonso, M., Pascual-Teresa, S., Santos Buelga, C. and Rivas-Gonzalo, J.C. 2004. Evaluation of the antioxidant properties of fruits. Food Chemistry, 84: 13-18.
Gerasopoulos, D. and Stavroulakis, G. 1997. Quality characteristics of four Mulberry (Morus) cultivars in the area of Chania Greece. Journal of the Science of Food and Agriculture, 73: 261-264.
Giusti, M.M. and Wrolstad, R.E. 2001. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, 47: 777-780.
Gundogdu, M., Muradoglu, F., Sensoy, R.I.G. and Yilmaz, H. 2011. Determination of fruit chemical properties of Morus nigra, Morus alba L. and Morus rubra L. by HPLC. Scientia Horticulturae, 132: 37–41.
Guo, F.D., Wang, X.Z., Liu, X.Y., Han, X. and Wang, X.J. 2011. Metabolic regulation of plants anthocyanin. Chin. Bull. Life Sci., 23: 938–944.
Hassanpour, H. and Alizadeh, S. 2016. Evaluation of phenolic compound, antioxidant activities and antioxidant enzymes of barberry genotypes in Iran. Scientia Horticulturae, 200: 125–130.
Hosseini, A.S., Akramian, M., Khadivi, A. and Salehi-Arjmand, H. 2018. Phenotypic and
chemical variation of black Mulberry (Morus nigra) genotypes. Ind. Crops. Prod., 117: 260–271.
Imran, M., Khan, H., Shah, M., Khan, R. and Khan, F. 2010. Chemical composition and antioxidant activity of certain Morus Journal of Zhejiang University science B, 11(12): 973–980.
Jiang, Y. and Nie, W.J. 2015. Chemical properties in fruits of mulberry species from the
Xinjiang province of China. Food Chem. 174: 460–466.
Jun, H., Kim, Y. and Kim, Y. 2014. Antioxidant activities of Rubus coreanus Miquel and Morus alba Fruits. J Korean Soc Food Sci Nutr, 43(3): 381-388.
Krishna, H., Singh, D., Singh, R.S., Kumar, L., Sharma, B.D. and Saroj, P.L. 2018. Morphological and antioxidant characteristics of Mulberry (Morus) genotypes. Journal of the Saudi Society of Agricultural Sciences, 19(2): 136-145.
Liang, L., Zhu, M., Li, F., Yang, L., Wu, X., Zhao, W. and Zou, Y. 2012. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacognosy Magazine, 8(31): 215.
Mahmood, T., Anwar, F., Afzal, N., Kausar, R., Ilyas, S. and Shoaib, M. 2017. Influence of ripening stages and drying methods on polyphenolic content and antioxidant activities of Mulberry fruits. J. Food Meas. Charact., 11 (4): 2171–2179.
Makhoul, G., Mahfoud, H. and Baroudi, H. 2017. Some chemical characteristics of white (Morus Alba) and black (Morus Nigra L.) mulberry phenotypes in Tartus Syria. SSRG International Journal of Agriculture & Environmental Science, 4(2): 53-62.
Nakajima, J.I., Tanaka, I., Seo, S., Yamazaki, M. and Saito, K. 2004. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. Journal of Biomedicine and Biotechnology, 5: 241–247.
Nikkhah, E., Khayami, M. and Heydari, R. 2009. Evaluation of nitric oxide scavenging activity of anthocyanins from black berry (Morus Nigra), strawberry (Fragaria Vesca L.) and berry (Morus Alba L. var. Nigra) extracts. Iranian journal of medicinal and aromatic plants, 25(1): 120-128.
Özgen, M., Serçe, S. and Kaya, C. 2009. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra Scientia Horticulturae, 119: 275-279.
Parsons, B. 2017. Antioxidants in food: the significance of characterisation, identification, chemical and biological assays in determining the role of antioxidants in food. Foods, 6(8): 68.
Parvizi, V., Shirzad, H., Alirezalou, A. and Rahmanzadeh Ishkeh, Sh. 2019. Effect of chitosan nano-emulsion and fennel essential oil on antioxidant activity and biochemical contents of black mulberry (Morus nigra L.). Pomology Research, 5(1):1-15.
Ramappa, V.K., Srivastava, D., Singh, P., Kumar, U., Kumar, D., Gosipatala, S.B., Saha, S., Kumar, D. and Raj, R. 2020. Mulberries: a promising fruit for phytochemicals, nutraceuticals, and biological activities. Int. J. Fruit Sci., 20: S1254-S1279.
Sabeti, H. 2008. Forests, trees and shrubs of Iran. Yazd university press, Yazd, 854 p.
Seal, T. 2016. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of north-eastern region in India. Journal of Applied Pharmaceutical Science, 6: 157-166
Shah, M.A., Bosco, S.J.D. and Mir, S.A. 2014. Plant extracts as natural antioxidants in meat and meat products. Meat science, 98(1): 21-33.
Smith, M., Marley, K., Seigler, D., Singletary, K. and Meline, B. 2000. Bioactive properties of wild blueberry fruits. Journal of Food Science, 65: 352-356.
Xiaomin, G., Qi, H. and Zhiling, M. 2020. Differences of sugar components in different mulberry cultivars during its ripening. IOP Conference Series: Earth and Environmental Science, 446: 032058.
Zadernowski, R., Naczk, M. and Nesterowicz, J. 2005. Phenolic acid profiles in some small berries. J. Agric. Food Chem., 53(6): 2118-2124.