Evaluation of the Effect of Guar and Xanthan Gums on Viscoelastic Properties of Gluten-Free Sponge Cake by the Use of Stress Relaxation Test
Subject Areas : MicrobiologyH. Bagheri 1 , A. Avazsufiyan 2 , M. Alami 3
1 - دانشجوی دکتری مهندسی مواد و طراحی صنایع غذایی، دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 - دانشجوی دکتری مهندسی مواد و طراحی صنایع غذایی ، دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - دانشیار دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
Keywords: Gluten Free Cake, Guar Gum, Maxwell Model, Peleg-Normand Model, Viscoelastic Properties,
Abstract :
Introduction: Regarding the nutritional need for Celiac patients to use gluten-free diet, studies concerned with production to improve gluten-free products have been increased. The application of some ingredient as hydrocolloids is necessary due to low volume and weak texture in gluten-free products such as rice cake. This study is concerned with the application of hydrocolloids and its effect on the viscoelastic behavior of gluten-free rice cake. Materials and Methods: The effect of guar and xanthan gums on viscoelastic properties of gluten-free rice cake using stress relaxation test has been investigated followed by modeling and fitting the experimental date using tow Peleg- Normand and extended Maxwell models. Results: The results showed that F0, K1, K2 and Maxwell model parameters decreased by increasing guar and xanthan gums. Therefore by adding guar and xanthan gums, the initial decay rate was decreased. According to SSE and R2 models it might be stated that the Peleg- Normand model can justify the stress Viscoelastic behavior in gluten-free cake as versus the time. Conclusion: The application of guar and xanthan gums has improved the gluten-free cake considerably.
باقری، ه.، محبی، م. و کوچکی، آ. (1393). بررسی اثر جایگزینی آرد سورگوم بر رفتار فارینوگرافی و ویسکوالاستیکی خمیرآرد گندم، نشریه پژوهشهای علوم و صنایع غذایی ایران، جلد 10 ، شماره 4، 318-326.
Al-Haik, M. S., Hussaini, M. Y. & Garmestani, H. (2006). Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. International Journal of Plasticity 22, 1367-1392.
Campus, M., Addis, M. F., Cappuccinelli, R., Porcu, M. C., Pretti, L., Tedde, V., Secchi, N., Stara, G. & Roggio, T. (2010). Stress relaxation behaviour and structural changes of muscle tissues from Gilthead Sea Bream (Sparus aurata L.) following high pressure treatment. Journal Food Engineering, 96, 192-198.
Demirkesen, I., Mert, B., Sumnu, G. & Sahin, S. (2010). Rheological properties of gluten-free bread formulation. Journal of Food Engineering, 96, 295-303.
Gallagher, E., Gormley, T. R. & Arendt, E. K. (2004). Recent advances in the formulation of gluten-free cereal based products. Trends in Food Science and Technology, 15, 143–152.
Gujral, H. S., Guardiola, I., Carbonell, J. V. & Rosell, C. M. (2003). Effect of cyclodextrinase on dough rheology and bread quality from rice flour. Journal of Agricultural and Food Chemistry, 51, 3814–3818.
Hassan, B. H., Alhamdan, A. M. & Elansari, A. M. (2005). Stress relaxation of dates at khalal and rutab stages of maturity. Journal of Food Engineering, 66, 439–445.
Kajuna S., Bilanski W. K. & Mittal, G. S. (1998). Effect of ripening on the parameters of three stress relaxation models for banana and plantain. Transactions of the ASAE 41(1), 55-61.
Lazaridou, A., Duta, D., Papageorgiou, M., Belc, M. & Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology & bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79, 1033-1047.
Moghimi, A., Saeidirad, M. H. & Ghanji, E. (2011). Interpretation of viscoelastic behaviour of sweet cherries using rheological models. International Journal of Food Science and Technology, 46, 855-861.
Peleg, M. (1980). Linearization of relaxation and creep curves of solid biological materials. Journal of Rheology (1978-present), 24, 451–463.
Peleg, M. & Normand, M. D. (1983). Comparison of two methods for stress relaxation data presentation of solid foods. Rheological Acta, 22, 108–113.
Sahin, S. & Sumnu, S. G. (2006). Physical properties of foods. Springer.
Sandoval, E. R., Quintero, A. F. & Cuvelier, G. (2009). Stress relaxation of reconstituted cassava dough. LWT - Food Science and Technology, 42, 202–206.
Singh, H., Rockall, A., Martin, C. R., Chung, O. K. & Lookhart, G. L. (2006). The analysis of stress relaxation data of some viscoelastic foods using a texture analyzer. Journal of Texture Studies, 37(4), 383–392
Sozer, N., Kaya, A. & Coskun Dalgic, A. (2007). The effect of resistant starch addition on viscoelastic propertice of cooked spaghetti. Journal of texture studies 39 (1), 1-16.
Turabi, E., Sumnu, G. & Sahin, S. (2008). Rheological properties and quality of rice cake formulated with different gums and an emulsifier blend. Food Hydrocolloids, 22, 305-312.
Turabi, E., Sumnu, G. & Sahin, S. (2010). Quantitative analysis of macro and micro-structure of gluten-free rice cakes containing different types of gums baked in different ovens. Food Hydrocolloids, 24, 755-762.
Wu, M. Y., Chang, Y. H., Shiaui, S. Y. & Chen, C. C. (2012). Rheology of Fiber-Enriched Steamed Bread: Stress Relaxation and Texture Profile Analysis. Journal of Food and Drug Analysis, 20(1), 133-142.
Yadav, N., Roopa, B. S. & Bhattacharya, S. (2006). Viscoelasticity of a simulated polymer and comparison with chickpea flour doughs. Journal of Food Process Engineering, 29, 234–252.
_||_