Antioxidant and Antimicrobial Effect of Encapsulated Grape Extract in Nanochitosan-TPP on Shelf life of Surimi (Clupeonella cultriventris) in 4º ± 1 C
Subject Areas : NegahS. Soleymanfallah 1 , Zh. Khoshkhoo 2 , S.E. Hosseini 3 , M. H. Azizi 4
1 - PhD of the Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran .
2 - Associate Professor of the Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3 - Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Professor of the Department of Food Science and Technology, College of Agriculture , Tarbiat Modares University, Tehran, Iran.
Keywords: Surimi (Clupeonella cultriventris)", " :" Grape extract, Nanochitosan ":", "Antimicrobial activity ":, " Antioxidant activity,
Abstract :
Introduction: In this study, the effect of an aqueous extract of grape microencapsulated in chitosan nanoparticles (0.5 / 1) was used to evaluate the shelf life of surimi prepared from Kilka fish by ionic gelation method.Materials and Methods: Grape was extracted aqueously, and total phenol content was detected by spectrophotometry and phenolic acids of the extract by HPLC method. Physical properties of nanoparticles including particle size, zeta potentia and PDI were determined with zeta-sizer, and microencapsulation efficiency was determined by spectrophotometer and loading capacity of nanoparticles by HPLC method. Antioxidant activity of free extract and chitosan nanoparticles with / without extract (by DPPH test) was determined. The total count was determined by cryophilic, mesophilic, pseudomonas, mold, and yeast and inhibition capacity (MIC, MBC and IZ) of selected Gram positive and Gram negative bacteria and mold and yeast in different treatments days (0 , 1 , 3 , 6 and 9 ) at refrigeration temperature.Results: The data showed that the produced nanoparticles were in a favorable condition (particle size, zeta potential and PDI: 177.5 nm, +32.95 mV and 0.385 and the efficiency of microencapsulation and loading of nanoparticles were 48.95 and 6.19 percent, respectively). The phenolic content of the extract was 2896 ±18 mg/g and the extract in the loaded state showed a higher percentage of antioxidant activity (42.1%). Growth inhibition in microorganisms (gram positive and negative) is also increased and the overall amounts of bacteria and mold and yeast decreased, and the total values of cryophilic bacteria (6.35 ± 0.29 CFU/g), mesophilic bacteria (6.18 ± 0.27 CFU/g), Pseudomonas (5.41 ± 0.14 CFU/g), and mold and yeast (2.45 ± 0.26 CFU/ /g) in the last day of experiment, showed a significant decrease in the growth of microorganisms. Conclusion: According to the results, the use of chitosan nanoparticles containing extract in surimi of Kilka fish can delay microbial decay and increase the product resistance to free radicals and thus increase the shelf life of the product during the storage period in the refrigerator.
Abdeltwab , W. M ., Abdelaliem , Y. F., Metry , W. A ., & Eldeghedy , M . ( 2019) . Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. Journal of Advanced Laboratory Research in Biology , 10(1) , 8-15 . https://e-journal.sospublication.co.in/
Abdolahi-Cheleh bary, Z ., Latifi, Z. *, Mourki , N ., Khoshkhoo , J . ( 2022) . Huso huso fillet preservation with coating contained Spirulina algae extract at 4 ± 1 ° C . Iranian Journal of Food Science and Technology. JFST No. 121, Vol. 18 . http://dorl.net/dor/20.1001.1.20088787.1400.18.121.5.9 [In Persian]
Ahmed , F., Soliman , F. M ., Adly , M . A ., Soliman , H . A ., El‐Matbouli , M ., & Saleh , M . (2020) . In vitro assessment of the antimicrobial efficacy of chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines . Journal of Fish Diseases, 43(9), 1049-1063. https://doi.org/10.1111/jfd.13212
Aliasghari , A ., Khorasgani , M . R ., Vaezifar , S ., Rahimi , F., Younesi , H . and Khoroushi , M .
( 2016) . Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: An in vitro study. Iranian Journal of Microbiology, 8(2), p.93. http://ijm.tums.ac.ir/
Alves , V. L ., Rico , B . P., Cruz , R . M ., Vicente , A . A ., Khmelinskii , I ., & Vieira , M . C . ( 2018) . Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). Lwt- Food Science and Technology , 89, 525-534. https://doi.org/10.1016/j.lwt.2017.11.013
Amorati , R ., Foti , M . C ., & Valgimigli , L . ( 2013) . Antioxidant activity of essential oils . Journal of agricultural and food chemistry, 61(46), 10835-10847. https://doi.org/10.1021/jf403496k
Chandrasekaran , M ., Kim , K . D ., & Chun , S. C. ( 2020) . Antibacterial activity of chitosan nanoparticles : A review. Processes , 8(9) , 1173. https://doi.org/10.3390/pr8091173
Cho , E. J ., Holback , H ., Liu , K . C ., Abouelmagd , S. A ., Park , J ., & Yeo , Y . ( 2013) . Nanoparticle characterization : state of the art , challenges , and emerging technologies . Molecular pharmaceutics , 10(6) , 2093-2110 . https://doi.org/10.1021/mp300697h
Dube , A ., Ng , K ., Nicolazzo , J. A ., & Larson , I . ( 2010) . Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution . Food Chemistry , 122(3) , 662-667. https://doi.org/10.1016/j.foodchem.2010.03.027
Fakharzadeh , M . E ., Haghighi , M ., Sharifrouhani , M ., Sharifpoor , I . and Hamidi , M . ( 2020) . An In vitro and in vivo study on antimicrobial activity of Origanum vulgare extract and its nano form against Streptococcus iniae in rainbow trout (Oncorhynchus mykiss) . Iranian Journal of Fisheries Sciences, 19 (5), pp.2454-2463 . https://doi.org/10.22092/ijfs.2020.122452
Ghaderi Ghahfarokhi , M . Barzegar . M , Sahari , M . A ., & Azizi , M . H . ( 2016) . Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles . Journal of Agricultural Science and Technology, 18(7) , 1781-1792 . http://dorl.net/dor/20.1001.1.16807073.2016.18.7.20.0
Gibis . M , Rahan . N , Weiss . J . (2013) . Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposoma Containing Grape Seed Extract . J . Pharmaceutics : 5 , 421-433 . https://doi.org/10.3390/pharmaceutics5030421
Haider , J ., Majeed , H ., Williams , P. A ., Safdar , W., & Zhong , F . ( 2017) . Formation of chitosan nanoparticles to encapsulate krill oil (Euphausia superba) for application as a dietary supplement . Food Hydrocolloids, 63, 27-34. https://doi.org/10.1016/j.foodhyd.2016.08.020
Hajji , S ., Hamdi , M ., Boufi , S ., Li , S ., & Nasri , M . ( 2019) . Suitability of chitosan nanoparticles as cryoprotectant on shelf life of restructured fish surimi during chilled storage. Cellulose, 26(11), 6825-6847. https://doi.org/10.1007/s10570-019-02555-1
Hassanzadeh , P., Moradi , M ., Vaezi , N ., Moosavy , M . H ., & Mahmoudi , R . (2018) . Effects of chitosan edible coating containing grape seed extract on the shelf-life of refrigerated rainbow trout fillet. In Veterinary Research Forum (Vol. 9, No. 1, p. 73). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. https://www.ncbi.nlm.nih.gov/Downloads/vrf.iranjournals.ir
Hu , Z . and Gänzle , M . G . ( 2019) . Challenges and opportunities related to the use of chitosan as a food preservative . Journal of Applied Microbiology, 126(5) , pp.1318-1331. https://doi.org/10.1111/jam.14131
Isamaleki . Z ., Muraki . N ., Khoshkhoo . Zh ., Moini . S . ( 2020) . Effect of (Satureja hortensis) on Shelf life of fish (Scomberomorus guttatus) in Cold Storage . Journal of Animals Environments .12 (1) : spring 2020 . https://doi.org/10.22034/aej.2020.105136 . [In Persian]
Jeyakumari , A ., Ninan , G ., Joshy , C. G ., Parvathy , U ., Zynudheen , A . A ., & Lalitha , K . V. ( 2016) . Effect of chitosan on shelf life of restructured fish products from pangasius (Pangasianodon hypophthalmus) surimi during chilled storage . Journal of Food science and Technology , 53(4) , 2099-2107. http://dx.doi.org/10.1007%2Fs13197-016-2174-3
Keawchaoon . L and Yoksan . R ( 2011) . Prepration , charectrization and in vitro release study of Carvacrol-loaded chitosan nanoparticles . 2011 . J . Colloids and Surfaces B:Biointerfaces 84:163-167 .
Koponen , J . M ., A . M . Happonen , P. H . Mattila and A . R . Torronen . ( 2007) . Contents of anthocyanins and ellagitannins in selected foods consumed in Finland . J. Agr. Food Chem. https://doi.org/10.1021/jf062897a
Lambrianidi , L ., Savvaidis , I . N ., Tsiraki , M . I ., & El-Obeid , T . ( 2019) . Chitosan and oregano oil treatments, individually or in combination , used to increase the shelf life of vacuum-packaged , refrigerated European eel (Anguilla anguilla) fillets . Journal of food protection , 82(8) , 1369-1376 .
Maghami , M ., Motalebi , A . A ., & Anvar , S. A. A ( 2015) . Influence of chitosan nanoparticles and fennel essential oils (Foeniculum vulgare) on the shelf life of Huso huso fish fillets during the storage. Food science & nutrition, 7(9), 3030-3041. https://doi.org/10.1002/fsn3.1161
Prakash , B ., Kedia , A ., Mishra , P. K . and Dubey , N . K . ( 2015) . Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities–Potentials and challenges . Food control, 47, pp.381-391. https://doi.org/10.1016/j.foodcont.2014.07.023
Puligundla , P., Mok , C ., Ko , S ., Liang , J ., & Recharla , N . ( 2017) . Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols. Journal of Functional Foods, 34, 139-151. https://doi.org/10.1016/j.jff.2017.04.023
Qi . L , Xu . Z , Jiang . X , Hu . C , Zou . X . (2004) . Prepration and antimicrobial activity of chitosan nanoparticles .J. Carbohydrate Research 339:2693-2700 . https://doi.org/10.1016/j.carres.2004.09.007
Rajaei , A ., Barzegar , M ., Hamidi , Z ., & Sahari , M . A . ( 2010) . Optimization of extraction conditions of phenolic compounds from pistachio (Pistachia vera) green hull through response surface method . Journal of Agricultural Science and Technology ,12,605-615 . http://dorl.net/dor/20.1001.1.16807073.2010.12.5.9.3
Rasaee , I ., Ghannadnia , M ., & Honari , H . ( 2016) . Antibacterial properties of biologically formed chitosan nanoparticles using aqueous leaf extract of Ocimum basilicum. Nanomedicine Journal, 3(4), 240-247. https://doi.org/10.22038/nmj.2016.7580
Rezaeian , M . Khanzadi , S . Hashemi , M . Azizzadeh ,. M . ( 2021) . Antimicrobial Effect of Gel-Type Nanoemulsion of Chitosan Coating Containing Essential Oils of Zataria multiflora and Bunium persicum on Pseudomonas Artificially Inoculated onto Salmon Fillets . Medical Laboratory Journal , 15(3), 14-19 . file:///E:/semnani/2020/4%20Jul-Aug%202020/1-article%20A-10-913-1-nasir/10.29252/mlj.14.4.1
Roostaee , M ., Barzegar , M ., Sahari , M . A ., & Rafiee , Z . (2017) . The enhancement of pistachio green hull extract functionality via nanoliposomal formulation: studying in soybean oil . Journal of food science and technology, 54(11), 3620-3629 . https://doi.org/10.1007%2Fs13197-017-2822-2
Shahbazi .Y and Shaveisi . N . (2018) . Characterization of active nanochitosan film containing natural preservative agents . J. Nanomes Res 3(2):109-116 . https://doi.org/10.22034/nmrj.2018.02.008
Silva , V., Singh , R . K ., Gomes , N ., Soares , B. G ., Silva , A ., Falco , V. & Poeta , P . ( 2020) . Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants , 9(2) , 178 . https://doi.org/10.3390/antiox9020178
Tang . D-W , Yu . S-H , Ho .Y-C , Huang . B-Q , Tsai . G-J , Hsieh . H-Y , Sung . H-W, MI . F-W . (2013) . Characterization of tea catechins – loaded nanoparticle prepared from chitosan and an edible polypeptide . Journal of Food Hydrocolloids , 30 : 33-41 . https://doi.org/10.1016/j.foodhyd.2012.04.014
Vekiari , S. A ., Gordon , M . H ., Garcia-Macias , P. A ., & Labrinea , H . (2008) . Extraction and determination of ellagic acid contentin chestnut bark and fruit . Journal of Food Chemistry, 110(4), 1007-1011. https://doi.org/10.1016/j.foodchem.2008.02.005
Yoksan , R ., Jirawutthiwongchai , J ., & Arpo , K . (2010) . Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes . Journal of Colloids and Surfaces B: Biointerfaces, 76(1), 292-297 . https://doi.org/10.1016/j.colsurfb.2009.11.007
Zamani . A . ( 2019) . Assessment of Spearmint(Mentha spicata . L) Extract Effect on Chemical and Bacterial Quality of Common Kilka (Clupeonella cultriventris) Surimi during ShortTerm Storage inRefrigerator . Journal of Fisheries Science and Technology Volume 8, Issue 2, Spring 2019 Pages: 99-108 . http://dorl.net/dor/20.1001.1.23225513.1398.8.2.4.2. [In Persian]
Zarei , M ., Ramezani , Z ., Ein‐Tavasoly , S., & Chadorbaf , M . ( 2015 ) . Coating effects of orange and pomegranate peel extracts combined with chitosan nanoparticles on the quality of refrigerated silver carp fillets. Journal of food processing and preservation, 39(6), 2180-2187. https://doi.org/10.1111/jfpp.12462
_||_Abdeltwab , W. M ., Abdelaliem , Y. F., Metry , W. A ., & Eldeghedy , M . ( 2019) . Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. Journal of Advanced Laboratory Research in Biology , 10(1) , 8-15 . https://e-journal.sospublication.co.in/
Abdolahi-Cheleh bary, Z ., Latifi, Z. *, Mourki , N ., Khoshkhoo , J . ( 2022) . Huso huso fillet preservation with coating contained Spirulina algae extract at 4 ± 1 ° C . Iranian Journal of Food Science and Technology. JFST No. 121, Vol. 18 . http://dorl.net/dor/20.1001.1.20088787.1400.18.121.5.9 [In Persian]
Ahmed , F., Soliman , F. M ., Adly , M . A ., Soliman , H . A ., El‐Matbouli , M ., & Saleh , M . (2020) . In vitro assessment of the antimicrobial efficacy of chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines . Journal of Fish Diseases, 43(9), 1049-1063. https://doi.org/10.1111/jfd.13212
Aliasghari , A ., Khorasgani , M . R ., Vaezifar , S ., Rahimi , F., Younesi , H . and Khoroushi , M .
( 2016) . Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: An in vitro study. Iranian Journal of Microbiology, 8(2), p.93. http://ijm.tums.ac.ir/
Alves , V. L ., Rico , B . P., Cruz , R . M ., Vicente , A . A ., Khmelinskii , I ., & Vieira , M . C . ( 2018) . Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). Lwt- Food Science and Technology , 89, 525-534. https://doi.org/10.1016/j.lwt.2017.11.013
Amorati , R ., Foti , M . C ., & Valgimigli , L . ( 2013) . Antioxidant activity of essential oils . Journal of agricultural and food chemistry, 61(46), 10835-10847. https://doi.org/10.1021/jf403496k
Chandrasekaran , M ., Kim , K . D ., & Chun , S. C. ( 2020) . Antibacterial activity of chitosan nanoparticles : A review. Processes , 8(9) , 1173. https://doi.org/10.3390/pr8091173
Cho , E. J ., Holback , H ., Liu , K . C ., Abouelmagd , S. A ., Park , J ., & Yeo , Y . ( 2013) . Nanoparticle characterization : state of the art , challenges , and emerging technologies . Molecular pharmaceutics , 10(6) , 2093-2110 . https://doi.org/10.1021/mp300697h
Dube , A ., Ng , K ., Nicolazzo , J. A ., & Larson , I . ( 2010) . Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution . Food Chemistry , 122(3) , 662-667. https://doi.org/10.1016/j.foodchem.2010.03.027
Fakharzadeh , M . E ., Haghighi , M ., Sharifrouhani , M ., Sharifpoor , I . and Hamidi , M . ( 2020) . An In vitro and in vivo study on antimicrobial activity of Origanum vulgare extract and its nano form against Streptococcus iniae in rainbow trout (Oncorhynchus mykiss) . Iranian Journal of Fisheries Sciences, 19 (5), pp.2454-2463 . https://doi.org/10.22092/ijfs.2020.122452
Ghaderi Ghahfarokhi , M . Barzegar . M , Sahari , M . A ., & Azizi , M . H . ( 2016) . Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles . Journal of Agricultural Science and Technology, 18(7) , 1781-1792 . http://dorl.net/dor/20.1001.1.16807073.2016.18.7.20.0
Gibis . M , Rahan . N , Weiss . J . (2013) . Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposoma Containing Grape Seed Extract . J . Pharmaceutics : 5 , 421-433 . https://doi.org/10.3390/pharmaceutics5030421
Haider , J ., Majeed , H ., Williams , P. A ., Safdar , W., & Zhong , F . ( 2017) . Formation of chitosan nanoparticles to encapsulate krill oil (Euphausia superba) for application as a dietary supplement . Food Hydrocolloids, 63, 27-34. https://doi.org/10.1016/j.foodhyd.2016.08.020
Hajji , S ., Hamdi , M ., Boufi , S ., Li , S ., & Nasri , M . ( 2019) . Suitability of chitosan nanoparticles as cryoprotectant on shelf life of restructured fish surimi during chilled storage. Cellulose, 26(11), 6825-6847. https://doi.org/10.1007/s10570-019-02555-1
Hassanzadeh , P., Moradi , M ., Vaezi , N ., Moosavy , M . H ., & Mahmoudi , R . (2018) . Effects of chitosan edible coating containing grape seed extract on the shelf-life of refrigerated rainbow trout fillet. In Veterinary Research Forum (Vol. 9, No. 1, p. 73). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. https://www.ncbi.nlm.nih.gov/Downloads/vrf.iranjournals.ir
Hu , Z . and Gänzle , M . G . ( 2019) . Challenges and opportunities related to the use of chitosan as a food preservative . Journal of Applied Microbiology, 126(5) , pp.1318-1331. https://doi.org/10.1111/jam.14131
Isamaleki . Z ., Muraki . N ., Khoshkhoo . Zh ., Moini . S . ( 2020) . Effect of (Satureja hortensis) on Shelf life of fish (Scomberomorus guttatus) in Cold Storage . Journal of Animals Environments .12 (1) : spring 2020 . https://doi.org/10.22034/aej.2020.105136 . [In Persian]
Jeyakumari , A ., Ninan , G ., Joshy , C. G ., Parvathy , U ., Zynudheen , A . A ., & Lalitha , K . V. ( 2016) . Effect of chitosan on shelf life of restructured fish products from pangasius (Pangasianodon hypophthalmus) surimi during chilled storage . Journal of Food science and Technology , 53(4) , 2099-2107. http://dx.doi.org/10.1007%2Fs13197-016-2174-3
Keawchaoon . L and Yoksan . R ( 2011) . Prepration , charectrization and in vitro release study of Carvacrol-loaded chitosan nanoparticles . 2011 . J . Colloids and Surfaces B:Biointerfaces 84:163-167 .
Koponen , J . M ., A . M . Happonen , P. H . Mattila and A . R . Torronen . ( 2007) . Contents of anthocyanins and ellagitannins in selected foods consumed in Finland . J. Agr. Food Chem. https://doi.org/10.1021/jf062897a
Lambrianidi , L ., Savvaidis , I . N ., Tsiraki , M . I ., & El-Obeid , T . ( 2019) . Chitosan and oregano oil treatments, individually or in combination , used to increase the shelf life of vacuum-packaged , refrigerated European eel (Anguilla anguilla) fillets . Journal of food protection , 82(8) , 1369-1376 .
Maghami , M ., Motalebi , A . A ., & Anvar , S. A. A ( 2015) . Influence of chitosan nanoparticles and fennel essential oils (Foeniculum vulgare) on the shelf life of Huso huso fish fillets during the storage. Food science & nutrition, 7(9), 3030-3041. https://doi.org/10.1002/fsn3.1161
Prakash , B ., Kedia , A ., Mishra , P. K . and Dubey , N . K . ( 2015) . Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities–Potentials and challenges . Food control, 47, pp.381-391. https://doi.org/10.1016/j.foodcont.2014.07.023
Puligundla , P., Mok , C ., Ko , S ., Liang , J ., & Recharla , N . ( 2017) . Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols. Journal of Functional Foods, 34, 139-151. https://doi.org/10.1016/j.jff.2017.04.023
Qi . L , Xu . Z , Jiang . X , Hu . C , Zou . X . (2004) . Prepration and antimicrobial activity of chitosan nanoparticles .J. Carbohydrate Research 339:2693-2700 . https://doi.org/10.1016/j.carres.2004.09.007
Rajaei , A ., Barzegar , M ., Hamidi , Z ., & Sahari , M . A . ( 2010) . Optimization of extraction conditions of phenolic compounds from pistachio (Pistachia vera) green hull through response surface method . Journal of Agricultural Science and Technology ,12,605-615 . http://dorl.net/dor/20.1001.1.16807073.2010.12.5.9.3
Rasaee , I ., Ghannadnia , M ., & Honari , H . ( 2016) . Antibacterial properties of biologically formed chitosan nanoparticles using aqueous leaf extract of Ocimum basilicum. Nanomedicine Journal, 3(4), 240-247. https://doi.org/10.22038/nmj.2016.7580
Rezaeian , M . Khanzadi , S . Hashemi , M . Azizzadeh ,. M . ( 2021) . Antimicrobial Effect of Gel-Type Nanoemulsion of Chitosan Coating Containing Essential Oils of Zataria multiflora and Bunium persicum on Pseudomonas Artificially Inoculated onto Salmon Fillets . Medical Laboratory Journal , 15(3), 14-19 . file:///E:/semnani/2020/4%20Jul-Aug%202020/1-article%20A-10-913-1-nasir/10.29252/mlj.14.4.1
Roostaee , M ., Barzegar , M ., Sahari , M . A ., & Rafiee , Z . (2017) . The enhancement of pistachio green hull extract functionality via nanoliposomal formulation: studying in soybean oil . Journal of food science and technology, 54(11), 3620-3629 . https://doi.org/10.1007%2Fs13197-017-2822-2
Shahbazi .Y and Shaveisi . N . (2018) . Characterization of active nanochitosan film containing natural preservative agents . J. Nanomes Res 3(2):109-116 . https://doi.org/10.22034/nmrj.2018.02.008
Silva , V., Singh , R . K ., Gomes , N ., Soares , B. G ., Silva , A ., Falco , V. & Poeta , P . ( 2020) . Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants , 9(2) , 178 . https://doi.org/10.3390/antiox9020178
Tang . D-W , Yu . S-H , Ho .Y-C , Huang . B-Q , Tsai . G-J , Hsieh . H-Y , Sung . H-W, MI . F-W . (2013) . Characterization of tea catechins – loaded nanoparticle prepared from chitosan and an edible polypeptide . Journal of Food Hydrocolloids , 30 : 33-41 . https://doi.org/10.1016/j.foodhyd.2012.04.014
Vekiari , S. A ., Gordon , M . H ., Garcia-Macias , P. A ., & Labrinea , H . (2008) . Extraction and determination of ellagic acid contentin chestnut bark and fruit . Journal of Food Chemistry, 110(4), 1007-1011. https://doi.org/10.1016/j.foodchem.2008.02.005
Yoksan , R ., Jirawutthiwongchai , J ., & Arpo , K . (2010) . Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes . Journal of Colloids and Surfaces B: Biointerfaces, 76(1), 292-297 . https://doi.org/10.1016/j.colsurfb.2009.11.007
Zamani . A . ( 2019) . Assessment of Spearmint(Mentha spicata . L) Extract Effect on Chemical and Bacterial Quality of Common Kilka (Clupeonella cultriventris) Surimi during ShortTerm Storage inRefrigerator . Journal of Fisheries Science and Technology Volume 8, Issue 2, Spring 2019 Pages: 99-108 . http://dorl.net/dor/20.1001.1.23225513.1398.8.2.4.2. [In Persian]
Zarei , M ., Ramezani , Z ., Ein‐Tavasoly , S., & Chadorbaf , M . ( 2015 ) . Coating effects of orange and pomegranate peel extracts combined with chitosan nanoparticles on the quality of refrigerated silver carp fillets. Journal of food processing and preservation, 39(6), 2180-2187. https://doi.org/10.1111/jfpp.12462