Determination of hydrogen peroxide in milk by fluorometric method using chitosan-coumarin film sensor
Subject Areas : food quality controlKatayoun Karimi 1 , Maryam Gharachorloo 2 , Afshin Fallah 3
1 -
2 - گروه صنایع غذایی
3 -
Keywords: Hydrogen peroxide, sensor, milk, photoluminescence, chitosan,
Abstract :
ABSTRACT: Accurate determination of hydrogen peroxide is of great importance from a public health standpoint. In this work, determination of hydrogen peroxide in milk was performed using chitosan-coumarin film sensor via a fluorometric method. Coumain-3-carboxylic acid (CCA) was used as a probe in the matrix of chitosan. The structures of the films were confirmed by various instrumental analysis including FT-IR, TGA, and SEM. Various parameters such as the amount of CCA, pH, and the effect of catalyst on the response of the sensor were investigated. The results indicated that ultraviolet radiation could improve the response of the sensor. Hydrogen peroxide was determined using this method in the range of 12-200 μM and 0.5-8.0 mM. The calibration plots demonstrated that the fluorescence response of the sensor films was linear over hydrogen peroxide concentrations of 12-200 µM and 500-8000 µM, with a detection limit (LOD) of 3 µM.
Abo, M., Urano, Y., Hanaoka, K., Terai, T., Komatsu, T., Nagano, T. (2011). Development of a highly sensitive fluorescence probe for hydrogen peroxide, Journal of the American Chemical Society, 133(27), 10629–10637. https://doi.org/10.1021/ja203521e
Ardila, J. A., Oliveira, G. G., Medeiros, R. A., Fatibello-Filho, O. (2013). Determination of gemfibrozil in pharmaceutical and urine samples by square-wave adsorptive stripping voltammetry using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film, Journal of Electroanalytical Chemistry, 690, 32-37. https://doi.org/10.1016/j.jelechem.2012.11.038
Domergue, L., Cimetière, N., Giraudet, S., Hauchard, D. (2023). Determination of hydrogen peroxide by differential pulse polarography in advanced oxidation processes for water treatment, Journal of Water Process Engineering, 53, 103707. https://doi.org/10.1016/j.jwpe.2023.103707
Dong, X-x., Li, M-y., Feng, N-n., Sun, Y-m., Yang, Ch., Xu, Zh-l. (2015). A nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk, RSC Advances, 5(105), 86485. https://doi.org/10.1039/C5RA18560B
Gizaw, Z. (2019), Public health risks related to food safety issues in the food market: a systematic literature review, Environmental Health and Preventive Medicine, 24(1), 68. https://doi.org/10.1186/s12199-019-0825-5
Guascito, M. R., Filippo, E., Malitesta, C., Manno, D., Serra, A., Turco, A. (2008). A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide, Biosensors and Bioelectronics, 24(4),1057–1063. https://doi.org/10.1016/j.bios.2008.07.048
Harris, D. C. (2007). Quantitative chemical analysis ,7th Edition, W. H. Freeman.
Hu, A. L., Liu, Y. H., Deng, H. H., Hong, G. L., Liu, A. L., Lin, X. H., Xia, X. H., Chen, W. (2014). Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection, Biosensors and Bioelectronics, 61, 374-378. https://doi.org/10.1016/j.bios.2014.05.048
Islas, M. S., Martínez Medina, J. J., Piro, O. E., Echeverría, G. A., Ferrer, E. G., Williams, P. A. M. (2018). Comparisons of the spectroscopic and microbiological activities among coumarin-3-carboxylate, o-phenanthroline and zinc(II) complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, 212-221. https://doi.org/10.1016/j.saa.2018.03.003
Ivanova, A. S., Merkuleva, A. D., Andreev, S. V., Sakharov, K. A. (2019). Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography, Food Chemistry. 283, 431-436. https://doi.org/ 10.1016/j.foodchem.2019.01.051
Kim, Y., Jeon, Y., Na, M., Hwang, S-J., Yoon, Y. (2024). Recent trends in chemical sensors for detecting toxic materials, Sensors, 24(2), 431. https://doi.org/10.3390/s24020431
Li, P., Wang, Y., Liu, W., Chen, T., Liu, K. (2025). Enhancing the structural and electrochemical properties of lithium iron phosphate via titanium doping during precursor synthesis, Energies, 2025, 18(4), 930. https://doi.org/10.3390/en18040930
Lima, L. S., Rossini, E. L., Pezza, L., Pezza, H. R. (2020). Bioactive paper platform for detection of hydrogen peroxide in milk, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 227, 117774. https://doi.org/10.1016/j.saa.2019.117774
Liu, Sh. G.,Liu, S.,Yang, Sh., Zhao, Q., Deng, J., Shi, X. (2022). A facile fluorescent sensing strategy for determination of hydrogen peroxide in foods using a nanohybrid of nanoceria and carbon dots based on the target-promoted electron transfer, Sensors and Actuators B Chemical, 356, 131325. https://doi.org/10.1016/j.snb.2021.131325
Masoud Shariati-Rad, M., Salarmand, N., Jalilvand, F. (2017). Determination of hydrogen sulfide and hydrogen peroxide in complex samples of milk and urine by spectroscopic standard addition data and chemometrics methods, RSC Advances, 7, 28626-28636. https://doi.org/ 10.1039/C7RA00626H
Myers, J. N., Zhang, Ch., Chen, Ch., Chen, Zh. (2014). Influence of casting solvent on phenyl ordering at the surface of spin cast polymer thin films, Journal of Colloid and Interface Science, 423, 60-66. https://doi.org/10.1016/j.jcis.2014.02.027
Mukhopadhya, A., Santoro, J., Odriscoll, L. (2021). Extracellular vesicle separation from milk and infant milk formula using acid precipitation and ultracentrifugation. STAR Protocols, 2(4),100821. https://doi.org/10.1016/j.xpro.2021.100821
Nafradi, M., Farkas, L., Alapi, T., Hernadi, K., Kovacs, K., Wojnarovits, L., Takacs E. (2020). Application of coumarin and coumarin-3-carboxylic acid for the determination of hydroxyl radicals during different advanced oxidation processes, Radiation Physics and Chemistry,170, 108610. https://doi.org/10.1016/j.radphyschem.2019.108610
Nitinaivinij, K., Parnklang, T., Thammacharoen, Ch., Ekgasit, S., Wongravee, K. (2014). Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis, Analytical Methods, 6(24), 9816-9824. https://doi.org/10.1039/C4AY02339K
Palsaniya, Sh., Jat, B. L., Mukherji, S. (2023). Amperometry sensor for real time detection of hydrogen peroxide adulteration in food samples, Electrochimica Acta, 462, 142724. https://doi.org/10.1016/j.electacta.2023.142724
Rutely-C, B. C., Jean-M, F., Walter-Z, T., Xochitlcd, D. B., Mika, S. (2018). Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes, RSC Advances, 8(10), 5321-5330.
https://doi.org/10.1039/c7ra13209c
Sadowska-Bartosz, I., Bartosz G. (2025). Hydrogen peroxide: A ubiquitous component of beverages and food, International Journal of Molecular Sciences, 26(7):3397. https://doi.org/ 10.3390/ijms26073397
Thambiliyagodage, Ch., Jayanetti, M., Mendis, A., Ekanayake, G., Liyanaarachchi, H., Vigneswaran, S. (2023). Recent advances in chitosan-based applications, A review, Materials, 16(5), 2073. https://doi.org/10.3390/ma16052073
Vasconcelos, H., Matias, A., Mendes, J., Araújo, J., Dias, B., Jorge, P. A.S., Saraiva, C., de Almeida, J. M. M., Coelho, L. C.C. (2023). Compact biosensor system for the quantification of hydrogen peroxide in milk, Talanta, 253,124062. https://doi.org/10.1016/j.talanta.2022.124062
Walstra, P., Wouters, J. T. M., Geurts, T. J. Dairy Science and Technology, Second Edition, CRC Press, Taylor & Francis group, 2006.
Wang, X., Wolfbeis, O. S., Meier, R. J. (2013). Luminescent probes and sensors for temperature. Chemical Society Reviews, 42(19), 7834-7869. https://doi.org/ 10.1039/c3cs60102a
Wang, Y., Xu, L., Xie, W. (2019). Rapid and sensitive colorimetric sensor for H2O2 and Hg2+ detection based on homogeneous iodide with high peroxidase-mimicking activity, Microchemical Journal,147, 75-82. https://doi.org/10.1016/j.microc.2019.03.015
Zambrano, G., Nastri, F., Pavone, V., Lombardi, A., Chino M. (2020). Use of an artificial miniaturized enzyme in hydrogen peroxide detection by chemiluminescence, Sensors, 20(13), 3793. https://doi.org/10.3390/s20133793
Zhang, X., Wang, S., Dao, J., Guo, J., Gao Y. (2022) A colorimetric sensing platform for the determination of H2O2 using 2D–1D MoS2-CNT nanozymes, RSC Advances. 12(44), 28349-28358. https://doi.org/10.1039/d2ra04831k
Zhao, J., Wang, Y., Wang, T., Hasebe, Y., Zhang, Zh. (2021). Molten-salt-composite of pyrite and silver nanoparticle as electrocatalyst for hydrogen peroxide sensing. Analytical Sciences. 37(11), 1589–1595. https://doi.org/10.2116/analsci.21P119
Zhou, G., Wang, X., Yang, Y. (2024). A new coumarin derivative as a highly selective ‘turn-on’ fluorescence probe for La3+ (lanthanum ion) in living zebrafish, Journal of Photochemistry and Photobiology A Chemistry, 447(7), 115264. https://doi.org/10.1016/j.jphotochem.2023.115264
