پپتیدهای زیست فعال: فرایند تولید، اثرات سلامتبخشی و کاربرد بهعنوان افزودنیهای طبیعی در تولید غذاهای فراسودمند (مقاله مروری)
محورهای موضوعی :
علوم و صنایع غذایی
سعید میردامادی
1
*
,
نازیلا سلیمانزاده
2
,
مهتا میرزایی
3
,
پریا مطهری
4
1 - دانشیار پژوهشکده زیستفناوری، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران
2 - دانشجوی دکتری زیستفناوری، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران
3 - استادیار گروه علوم و صنایع غذایی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشیار پژوهشکده زیستفناوری، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران
تاریخ دریافت : 1395/07/20
تاریخ پذیرش : 1396/03/06
تاریخ انتشار : 1396/03/01
کلید واژه:
پپتیدهای زیست فعال,
غذاهای فراسودمند,
افزودنیهای طبیعی,
سلامت بخش,
چکیده مقاله :
پپتیدهای زیست فعال اجزاء پروتئینی هستند که در درون ساختار پروتئین غیرفعال بوده و وقتی در اثر هیدرولیز آنزیمی آزاد میشوند، عملکردهای فیزیولوژیکی مختلفی نشان میدهند. اخیراً شناخت و تعیین ویژگیهای پپتیدهای زیست فعال بهدستآمده از منابع گیاهی، حیوانی و میکروبی مختلف بسیار موردتوجه قرارگرفته است. پپتیدهای زیست فعال با استفاده از هیدرولیز آنزیمی توسط آنزیمهای استخراجشده از میکروارگانیسمها یا گیاهان یا آنزیمهای گوارشی و تخمیر توسط کشتهای آغازگر پروتئولیتیک تولید میشوند و بر اساس ترکیب و توالی اسیدهای آمینه دارای عملکردهای مختلف شامل اثرات آرامشبخشی، باند دهندگی املاح، تقویتکنندگی سیستم ایمنی، آنتیاکسیدانی، ضدمیکروبی، ضدالتهاب، کاهشدهندگی کلسترول، ضد فشارخون و غیره میباشند. پپتیدهای زیست فعال با روشهای مختلف شامل تکنیکهای جداسازی غشایی و کروماتوگرافی از محصولات هیدرولیز پروتئینی جداسازی و با استفاده از تکنیکهای اسپکترومتری مورد شناسایی قرار میگیرند. امکان استفاده از پپتیدهای زیست فعال بهعنوان اجزاء سلامت بخشی یا درمانی وابسته به اطمینان از پایداری زیستی، دسترسی زیستی و ایمنی آنها میباشد. امروزه استفاده از تکنیکهای مبتنی بر کامپیوتر و استفاده از بانکهای اطلاعاتی مختلف در تکمیل مطالعات آزمایشگاهی، امکان بررسی مکانیسم عملکردی پپتیدهای مختلف را فراهم آورده است.
چکیده انگلیسی:
Bioactive peptides, are inactive components within the structure of the protein and when they are released by enzymatic hydrolysis, show different physiological functions. Recently, the identification and characterization of bioactive peptides derived from plant and animal sources and different microorganisms is highly regarded. They are produced during enzymatic hydrolysis by gastrointestinal enzymes or enzymes extracted from microorganisms and plants or by proteolytic starter cultures during fermentation process and exhibit different activities including: opioid, mineral binding, immunomodulatory, antioxidant, antimicrobial, anti-inflammatory, chlosterol lowering and so on. Take advantage of bioactive peptides as components of health is related to bio stability assurance, bioavailability and safety of them. The use of computer-based techniques and the use of various databases completed in laboratory studies, have provided the possibility of studying the mechanisms of action of different peptides.
منابع و مأخذ:
· Abdul-Hamid, A., Bakar, G. and Bee, G.H. (2002). Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chemistry 78(1): 69-74.
· Agyei, D. and Danquah, M.K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances 29(3): 272-277.
· Agyei, D., Ongkudon, C.M., Wei, C.Y., Chan, A.S. and Danquah, M.K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing 98: 244-256.
· Alashi, A. M., Blanchard, C.L., Blanchard, C.L., Mailer, R.G., Agboola, S.O., Mawson, J., et al. (2014). Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry 146: 500-506.
· Aluko, R. E. (2012). Bioactive peptides. Functional foods and nutraceuticals. New York, Springer-verlag.
· Anadón, A., Martínez, M.A., Ares, I., Ramos, E., Martinez-Larranaga, M.R., Contreras, M.M., et al. (2010). Acute and repeated dose (4 weeks) oral toxicity studies of two antihypertensive peptides, RYLGY and AYFYPEL, that correspond to fragments (90–94) and (143–149) from αs1-casein. Food and Chemical Toxicology 48(7): 1836-1845.
· Antila, P., Paakkari, I., Jarvinen, A., Mattila, M.J., Laukkanen, M., Pihlanto-leppala, A., et al. (1991). Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. International Dairy Journal 1(4): 215-229.
· Bamdad, F., Wu, J., Chen, L. (2011). Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science 54(1): 20-28.
· Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., et al. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry 118(3): 559-565.
· Chakrabarti, S. and Wu, J. (2016). Bioactive peptides on endothelial function. Food Science and Human Wellness 5(1): 1-7.
· Chang, O. K., Ha, G.E., Han, G.S., Seol, K.H., Kim, H.W., Jeong, S.G., et al. (2013). Novel antioxidant Peptide derived from the ultrafiltrate of ovomucin hydrolysate. Journal of Agricultural and Food Chemistry 61(30): 7294-7300.
· Chen, G.-W., Tsai, J.-S. Pan, B.S. (2007). Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. International Dairy Journal 17(6): 641-647.
· Chen , H., Muramoto , K., Yamauchi, F., Nokihara, K., (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry 44: 2619-2623.
· Da Rosa Zavareze, E., Telles, A.C., Halal, S.L.M., Meritaine, D.R., Colussi, R., Assis, L.M.D. et al. (2014). Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT - Food Science and Technology 59(2, Part 1): 841-848.
· Danquah, MK. and Agyei, D. (2012). Pharmaceutical applications of bioactive peptides. OA Biotechnology 1: 5.
· Day, L., Seymour, R.B., Pitts, K.F., Konczak, I., Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science & Technology 20(9): 388-395.
· De Castro, R. J. S. and Sato, H.H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International 74: 185-198.
· Dionysius, D. A. and Milne, J.M. (1997). Antibacterial peptides of bovine lactoferin:purification and characterization. Journal of Dairy Science 80: 667-674.
· Escudero, E., L. Mora, Toldra, F. (201 4). Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry 161: 305-311.
· Fiat, A.M, Migliore-Samour, D., Jolles, P., Drouet, L., Bal dit Sollier, C., Caen, J. (1993). Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. Journal of dairy science 76(1): 301-310.
· Gagnaire, V., Pierre, A., Molle, D., Leonil, J. (1996). Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles. Journal of Dairy Research 63: 405-422.
· Gobbetti, M., Stepaniak, L.,De Angelis, M., Corsetti, A., D Cagno, R. (2002). Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Critical Reviews in Food Science and Nutrition 42(3): 16.
· Harbourne, N., Marete, E., Jacquier, J.C., O,Riordan, D. (2013). Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages A review. Food Research International 50(2): 480-486.
· He, R., Girgih, A.T., Malomo, S. A., Ju, X., Aluko, R.E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods 5(1): 219-227.
· Kayser, H. and Meisel, H. (1996). Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins." FEBS Letters 25, 383 (1-2):18-20.
· Kilara, A. and Panyam, D. (2003). Peptides from milk proteins and their properties. Critical Review in Food Science and Nutrition 43: 607-633.
· Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal 16(9): 945-960.
· Last, N.B., Schlamadinger, D.E., Miranker, A.D. (2013). A common landscape for membrane-active peptides. Protein Science 22: 870-882.
· Li, G.-H., Le, G.W., Shi, Y.H., Shrestha, S. (2004). Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research 24: 469-486.
· Lorenzen, P. C. and Meisel, H. (2005). Influence of trypsin action in yoghurt milk on the release of caseinophosphopeptide-rich fractions and physical properties of the fermented products. International Journal of Dairy Technology 58(2): 119-124.
· Miquel, E., Gomez, J.A., Aleqria, A.,Barbera, R., Farre, R., Recio, I.(2005). Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas. Journal of Agricultural and Food Chemistry 53: 3426-3433.
· Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. (2016). Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Disease 6(7): 425-439.
· Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. Hosseini, E. (2015). Purification and identification ofantioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods 19: 259-268.
· Mizuno, S., Matsuura, K., Gotou, T., Nishimura, S., Kajimoto, O., Yabune, M. et al. (2005). Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension. British Journal of Nutrition 94(1): 84-91.
· Mohanty, D. P., Mohapatra, S., Misra, S., Sahu, P.S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences 23(5): 577-583.
· Möller N.P., KE, S.-A. Roos, N., Schrezenmeir, J. et al. (2008). Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition. 47: 171-182.
· Moslehishad, M., Ehsani, M.R., Salami, M., Mirdamadi, S., Ezzatpanah, H., Niasari Naslaji, A., et al. (2013). The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. International Dairy Journal 29: 82-87.
· Motahari, P., Mirdamadi, S., Kiani Rad, M. (2016). A Sequential Statistical Approach Towards an Optimized Production of Bacteriocin by Lactobacillus pentosus TSHS. Journal of Food Processing and Preservation 40(6):1238-1246.
· Nakamura, Y., Yamamoto, N., Sakai, K., Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. Journal of Dairy Science, 78: 1253-1257.
· Nakano, D., OGURA K., Miyakoshi, M., Ishii, F., Kawanishi, H., Kurumazuka, D., et al. (2006). Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Bioscience, Biotechnology and Biochemistry 70: 1118-1126.
· Narva, M., Rissanen, J., Halleen, J., Vapaatalo, H., Vaananen, K., Korpela, R. (2007). Effects of bioactive peptide, valyl-prolyl-proline (VPP), and lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Annals of Nutrition and Metabolism 51: 65-74.
· Nicolas, P. (2009). Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. Febs Journal 276: 6483-6496.
· Park, Y. W. and Nam, M.S. (2015). Bioactive Peptides in Milk and Dairy Products: A Review. ." Korean Journal for Food Science of Animal Resources 35: 831-840.
· Pellegrini, A., Dettling, C., Thomas, U., Hunziker, P. ( 2001). Isolation and characterization of four bactericidal domains in the bovine beta-lactoglobulin. Biochimica and Biophysica Acta. 1526: 131-140.
· Phelan, M., Aherne, A., FitzGerald, R.J. O´Brien, N.M. (2009). Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regu (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology 99(6): 1690-1698.
· Raikos, V., Dassios, T. (2014). Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review. Dairy Science & Technology 94: 91-101.
· Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y., Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry 135: 1245-1252.
· Ruiz-ruiz, J., Davila-Ortiz, G., Chel-Guerrero, L., Betancur-Ancona, D., Ruiz-Ruiz, J., Davila-Ortiz, G., et al. (2013). Angiotensin I-converting enzyme inhibitory and antioxidant peptide fractions from hard-to-cook bean enzymatic hydrolysates. Journal of Food Biochemistry 37: 26-35.
· Rutherfurd-Markwick, K. J. (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108.
· Sabeena Farvin, K. H., Baron, C.P., Nielsen, N.S., Otte, J., Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 2 – Characterisation of peptide fractions. Food Chemistry, 123: 1090-1097.
· Salami, M., Moosavi-movahedi, A.A., Ehsani, M.R., Yousefi, R., Haertle, T., Chobert, J.M. et al. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry 58: 3297-3302.
· Seppo, L., Jauhiaineh, T., Poussa, T., Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. The American Journal of Clinical Nutrition 77: 326-330.
· Shahidi, F. and Zhong, Y. (2008). Bioactive Peptides. Journal of AOAC International, 91: 914-931.
· Sheih, I. C., Wu, T.K., Fang, T.J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology 100: 3419-3425.
· Shimizu, M. and Son, D.O. (2007). Food-derived peptides and intestinal functions. Current Pharmaceutical Design, 13: 885-895.
· Singh, B. P., Vij, S., Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides 54: 171-179.
· Soleyanzadeh, N., Mirdamadi, S., KianiRad, M. (2016). Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Science & Technology 96: 443-457.
· Stuknyte, M., De Noni, I., Guglielmetti, S., Minuzzo, M., Mora, D. (2011). Potential immunomodulatory activity of bovine casein hydrolysates produced after digestion with proteinases of lactic acid bacteria. International Dairy Journal 21(10): 763-769.
· Suetsuna, K. and Chen, J.R. (2002). Isolation and Characterization of Peptides with Antioxidant Activity Derived from Wheat Gluten. Food science and technology research 8: 227-230.
· Teschemacher, H., Koch, G., Brantl, V. (1997). Milk protein-derived opioid receptor ligands. Biopolymers 43: 99-117.
· Trompette, A., Claustre, J., Caillon, F., Jourdan, G., Chayvialle, J.A., Plaisancie, P. (2003 ). Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. Journal of Nutrition 133: 3499-3503.
· Tsai, J. S., Chen, T.J., Pan, B.S., Gong, S.D., Chung, M.Y. (2008). Antihypertensive effect ofbioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry 106: 552-558.
· Udenigwe, C. C. and Aluko, R.E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science 77: 11-24.
· Walther, B. and Sieber, R. (2011). Bioactive proteins and peptides in foods. International Journal of Vitamin and Nutrition Research 81: 181-192.
· Wu, W., Yu, P.P., Zhang, F.Y., Hx, C., ZM, J. (2014). Stability and cytotoxicity of angiotensin-I-converting enzyme inhibitory peptides derived from bovine casein. Journal of Zhejiang University- Science B 15(2): 143-152.
· Yamamoto, N., Maenom, M., Takano, T. (1999). Purification and characterization of an antihypertensive peptide from a yogurt-like productfermented by Lactobacillus helveticus CPN4. Journal of Dairy Science 82: 1388-1393.
_||_
· Abdul-Hamid, A., Bakar, G. and Bee, G.H. (2002). Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chemistry 78(1): 69-74.
· Agyei, D. and Danquah, M.K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances 29(3): 272-277.
· Agyei, D., Ongkudon, C.M., Wei, C.Y., Chan, A.S. and Danquah, M.K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing 98: 244-256.
· Alashi, A. M., Blanchard, C.L., Blanchard, C.L., Mailer, R.G., Agboola, S.O., Mawson, J., et al. (2014). Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry 146: 500-506.
· Aluko, R. E. (2012). Bioactive peptides. Functional foods and nutraceuticals. New York, Springer-verlag.
· Anadón, A., Martínez, M.A., Ares, I., Ramos, E., Martinez-Larranaga, M.R., Contreras, M.M., et al. (2010). Acute and repeated dose (4 weeks) oral toxicity studies of two antihypertensive peptides, RYLGY and AYFYPEL, that correspond to fragments (90–94) and (143–149) from αs1-casein. Food and Chemical Toxicology 48(7): 1836-1845.
· Antila, P., Paakkari, I., Jarvinen, A., Mattila, M.J., Laukkanen, M., Pihlanto-leppala, A., et al. (1991). Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. International Dairy Journal 1(4): 215-229.
· Bamdad, F., Wu, J., Chen, L. (2011). Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science 54(1): 20-28.
· Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., et al. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry 118(3): 559-565.
· Chakrabarti, S. and Wu, J. (2016). Bioactive peptides on endothelial function. Food Science and Human Wellness 5(1): 1-7.
· Chang, O. K., Ha, G.E., Han, G.S., Seol, K.H., Kim, H.W., Jeong, S.G., et al. (2013). Novel antioxidant Peptide derived from the ultrafiltrate of ovomucin hydrolysate. Journal of Agricultural and Food Chemistry 61(30): 7294-7300.
· Chen, G.-W., Tsai, J.-S. Pan, B.S. (2007). Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. International Dairy Journal 17(6): 641-647.
· Chen , H., Muramoto , K., Yamauchi, F., Nokihara, K., (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry 44: 2619-2623.
· Da Rosa Zavareze, E., Telles, A.C., Halal, S.L.M., Meritaine, D.R., Colussi, R., Assis, L.M.D. et al. (2014). Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT - Food Science and Technology 59(2, Part 1): 841-848.
· Danquah, MK. and Agyei, D. (2012). Pharmaceutical applications of bioactive peptides. OA Biotechnology 1: 5.
· Day, L., Seymour, R.B., Pitts, K.F., Konczak, I., Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science & Technology 20(9): 388-395.
· De Castro, R. J. S. and Sato, H.H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International 74: 185-198.
· Dionysius, D. A. and Milne, J.M. (1997). Antibacterial peptides of bovine lactoferin:purification and characterization. Journal of Dairy Science 80: 667-674.
· Escudero, E., L. Mora, Toldra, F. (201 4). Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry 161: 305-311.
· Fiat, A.M, Migliore-Samour, D., Jolles, P., Drouet, L., Bal dit Sollier, C., Caen, J. (1993). Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. Journal of dairy science 76(1): 301-310.
· Gagnaire, V., Pierre, A., Molle, D., Leonil, J. (1996). Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles. Journal of Dairy Research 63: 405-422.
· Gobbetti, M., Stepaniak, L.,De Angelis, M., Corsetti, A., D Cagno, R. (2002). Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Critical Reviews in Food Science and Nutrition 42(3): 16.
· Harbourne, N., Marete, E., Jacquier, J.C., O,Riordan, D. (2013). Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages A review. Food Research International 50(2): 480-486.
· He, R., Girgih, A.T., Malomo, S. A., Ju, X., Aluko, R.E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods 5(1): 219-227.
· Kayser, H. and Meisel, H. (1996). Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins." FEBS Letters 25, 383 (1-2):18-20.
· Kilara, A. and Panyam, D. (2003). Peptides from milk proteins and their properties. Critical Review in Food Science and Nutrition 43: 607-633.
· Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal 16(9): 945-960.
· Last, N.B., Schlamadinger, D.E., Miranker, A.D. (2013). A common landscape for membrane-active peptides. Protein Science 22: 870-882.
· Li, G.-H., Le, G.W., Shi, Y.H., Shrestha, S. (2004). Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research 24: 469-486.
· Lorenzen, P. C. and Meisel, H. (2005). Influence of trypsin action in yoghurt milk on the release of caseinophosphopeptide-rich fractions and physical properties of the fermented products. International Journal of Dairy Technology 58(2): 119-124.
· Miquel, E., Gomez, J.A., Aleqria, A.,Barbera, R., Farre, R., Recio, I.(2005). Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas. Journal of Agricultural and Food Chemistry 53: 3426-3433.
· Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. (2016). Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Disease 6(7): 425-439.
· Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. Hosseini, E. (2015). Purification and identification ofantioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods 19: 259-268.
· Mizuno, S., Matsuura, K., Gotou, T., Nishimura, S., Kajimoto, O., Yabune, M. et al. (2005). Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension. British Journal of Nutrition 94(1): 84-91.
· Mohanty, D. P., Mohapatra, S., Misra, S., Sahu, P.S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences 23(5): 577-583.
· Möller N.P., KE, S.-A. Roos, N., Schrezenmeir, J. et al. (2008). Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition. 47: 171-182.
· Moslehishad, M., Ehsani, M.R., Salami, M., Mirdamadi, S., Ezzatpanah, H., Niasari Naslaji, A., et al. (2013). The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. International Dairy Journal 29: 82-87.
· Motahari, P., Mirdamadi, S., Kiani Rad, M. (2016). A Sequential Statistical Approach Towards an Optimized Production of Bacteriocin by Lactobacillus pentosus TSHS. Journal of Food Processing and Preservation 40(6):1238-1246.
· Nakamura, Y., Yamamoto, N., Sakai, K., Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. Journal of Dairy Science, 78: 1253-1257.
· Nakano, D., OGURA K., Miyakoshi, M., Ishii, F., Kawanishi, H., Kurumazuka, D., et al. (2006). Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Bioscience, Biotechnology and Biochemistry 70: 1118-1126.
· Narva, M., Rissanen, J., Halleen, J., Vapaatalo, H., Vaananen, K., Korpela, R. (2007). Effects of bioactive peptide, valyl-prolyl-proline (VPP), and lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Annals of Nutrition and Metabolism 51: 65-74.
· Nicolas, P. (2009). Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. Febs Journal 276: 6483-6496.
· Park, Y. W. and Nam, M.S. (2015). Bioactive Peptides in Milk and Dairy Products: A Review. ." Korean Journal for Food Science of Animal Resources 35: 831-840.
· Pellegrini, A., Dettling, C., Thomas, U., Hunziker, P. ( 2001). Isolation and characterization of four bactericidal domains in the bovine beta-lactoglobulin. Biochimica and Biophysica Acta. 1526: 131-140.
· Phelan, M., Aherne, A., FitzGerald, R.J. O´Brien, N.M. (2009). Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regu (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology 99(6): 1690-1698.
· Raikos, V., Dassios, T. (2014). Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review. Dairy Science & Technology 94: 91-101.
· Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y., Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry 135: 1245-1252.
· Ruiz-ruiz, J., Davila-Ortiz, G., Chel-Guerrero, L., Betancur-Ancona, D., Ruiz-Ruiz, J., Davila-Ortiz, G., et al. (2013). Angiotensin I-converting enzyme inhibitory and antioxidant peptide fractions from hard-to-cook bean enzymatic hydrolysates. Journal of Food Biochemistry 37: 26-35.
· Rutherfurd-Markwick, K. J. (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108.
· Sabeena Farvin, K. H., Baron, C.P., Nielsen, N.S., Otte, J., Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 2 – Characterisation of peptide fractions. Food Chemistry, 123: 1090-1097.
· Salami, M., Moosavi-movahedi, A.A., Ehsani, M.R., Yousefi, R., Haertle, T., Chobert, J.M. et al. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry 58: 3297-3302.
· Seppo, L., Jauhiaineh, T., Poussa, T., Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. The American Journal of Clinical Nutrition 77: 326-330.
· Shahidi, F. and Zhong, Y. (2008). Bioactive Peptides. Journal of AOAC International, 91: 914-931.
· Sheih, I. C., Wu, T.K., Fang, T.J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology 100: 3419-3425.
· Shimizu, M. and Son, D.O. (2007). Food-derived peptides and intestinal functions. Current Pharmaceutical Design, 13: 885-895.
· Singh, B. P., Vij, S., Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides 54: 171-179.
· Soleyanzadeh, N., Mirdamadi, S., KianiRad, M. (2016). Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Science & Technology 96: 443-457.
· Stuknyte, M., De Noni, I., Guglielmetti, S., Minuzzo, M., Mora, D. (2011). Potential immunomodulatory activity of bovine casein hydrolysates produced after digestion with proteinases of lactic acid bacteria. International Dairy Journal 21(10): 763-769.
· Suetsuna, K. and Chen, J.R. (2002). Isolation and Characterization of Peptides with Antioxidant Activity Derived from Wheat Gluten. Food science and technology research 8: 227-230.
· Teschemacher, H., Koch, G., Brantl, V. (1997). Milk protein-derived opioid receptor ligands. Biopolymers 43: 99-117.
· Trompette, A., Claustre, J., Caillon, F., Jourdan, G., Chayvialle, J.A., Plaisancie, P. (2003 ). Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. Journal of Nutrition 133: 3499-3503.
· Tsai, J. S., Chen, T.J., Pan, B.S., Gong, S.D., Chung, M.Y. (2008). Antihypertensive effect ofbioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry 106: 552-558.
· Udenigwe, C. C. and Aluko, R.E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science 77: 11-24.
· Walther, B. and Sieber, R. (2011). Bioactive proteins and peptides in foods. International Journal of Vitamin and Nutrition Research 81: 181-192.
· Wu, W., Yu, P.P., Zhang, F.Y., Hx, C., ZM, J. (2014). Stability and cytotoxicity of angiotensin-I-converting enzyme inhibitory peptides derived from bovine casein. Journal of Zhejiang University- Science B 15(2): 143-152.
· Yamamoto, N., Maenom, M., Takano, T. (1999). Purification and characterization of an antihypertensive peptide from a yogurt-like productfermented by Lactobacillus helveticus CPN4. Journal of Dairy Science 82: 1388-1393.