گلیکاسیون نایسین با گلوکز، لاکتوز و دکسترن و بررسی اثر مهاری آن بر علیه باکتریهای اشریشیا کلی و سالمونلا تیفیموریوم
محورهای موضوعی :
علوم و صنایع غذایی
مهدی هاشم پور صادقیان
1
,
نسرین کاظمی پور
2
,
سید شهرام شکرفروش
3
,
محمد هادی اسکندری
4
1 - دانشجوی دکتری بیوشیمی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
2 - دانشیار بخش علوم پایه دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
3 - استاد بخش بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
4 - دانشیار بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران
تاریخ دریافت : 1396/06/11
تاریخ پذیرش : 1396/10/07
تاریخ انتشار : 1397/10/01
کلید واژه:
نایسین,
گلیکاسیون,
واکنش میلارد,
باکتریهای گرم منفی,
چکیده مقاله :
نایسین یکی از پپتیدهای ضدمیکروبی است که در صنایع غذایی به عنوان ماده نگهدارنده کاربرد دارد. با این وجود، این پپتید فاقد اثر ضدمیکروبی قابل توجه برعلیه باکتری های گرم منفی می باشد. در این مطالعه تاثیر گلیکاسیون بر فعالیت ضدمیکروبی نایسین بر علیه باکتریهای اشریشیا کولای و سالمونلا تیفی موریوم بررسی گردیده است. بدین منظور محلول نایسین و پنج برابر غلظت قندهای گلوکز، لاکتوز و دکستران و همچنین محلول نایسین بدون حضور قند تهیه و سپس لیوفیلیزه گردید. پودر لیوفیلیزه بهمدت هفت روز در شرایط دمای 60 درجه سانتیگراد و رطوبت 70% قرار گرفت. در هر 24 ساعت یک نمونه از انکوباتور خارج گردید و در آب مقطر محلول شد. با استفاده از روش اندازهگیری پروتئین برادفورد، غلظتهای مولی مساوی از نایسین طبیعی و کنژوگه تهیه شد. درصد گلیکاسیون نمونه ها با استفاده از روش OPA (ortho-phthalaldehyde) و MIC50 نایسین کنترل و کنژوگه ها با روش میکرودایلوشن بر علیه باکتری های اشریشیا کولای و سالمونلا تیفی موریوم تعیین گردید. نتایج این مطالعه نشان داد که درصد گلیکاسیون نایسین ارتباط معکوسی با اندازه کربوهیدرات دارد، به شکلی که نایسین-گلوکز بیشترین و نایسین-دکستران کمترین درصد گلیکاسیون را نشان می دهند. گلیکاسیون نایسین پس از هفت روز باعث افزایش MIC50 نایسین بر علیه اشریشیا کولای گردید. در مقابل MIC50 نایسین طبیعی و کنژوگه تفاوت معنیدار نداشتند. از این مطالعه نتیجه گیری می شود که کنژوگه کردن نایسین با کربوهیدراتها نمی تواند موجب گسترش فعالیت آن به این دو باکتری گرم منفی گردد.
چکیده انگلیسی:
Nisin is an antimicrobial peptide used in the food industry as a preservative. However, this peptide has no considerable effect on gram-negative bacteria. In this study, the effect of glycation on the antimicrobial activity of nisin was elucidated against Escherichia coli and Salmonella Typhimurium. A solution of nisin and fivefold concentration of glucose, lactose and dextran and solution of nisin without any sugar were prepared in phosphate buffer and were lyophilized. The lyophilized powder was exposed to 60°C temperature and 70% humidity for 7 days. Every 24 hours, one sample was collected and dissolved in distilled. The equal molar concentration of native and conjugated nisin was made. Percentage of glycation was measured by OPA (ortho-phthalaldehyde) method. MIC50 of nisin was assayed by microdilution method against E. coli and S. Ttyphimurium. The result of this study has revealed that the percentage of glycation is conversely related to the size of carbohydrates in which nisin-glucose had the highest and nisin-dextran had the least percentage of glycation. Glycation of nisin increased the MIC50 of nisin against E. coli after seven days. MIC50 of native nisin and glycated nisin had no difference against S. Typhimurium. From this study, it was concluded that conjugation of nisin with carbohydrates is not able to extend the antimicrobial activity of nisin to gram-negative bacteria.
منابع و مأخذ:
· Abdullah, S.U., Badaruddin, M., Ali, R. and Riaz, M.N. (2010). Effect of elementary and advanced glycation products of nisin on its preservative efficacy and digestibility. Food Chemistry, 122(4): 1043-1046.
· Boziaris, I. and Adams, M. (1999). Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram negatives. International Journal of food microbiology, 53(2): 105-113.
· Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(248-254.
· Breukink, E., van Heusden, H.E., Vollmerhaus, P.J., Swiezewska, E., Brunner, L., Walker, S., et al. (2003). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. Journal of Biological Chemistry, 278(22): 19898-19903.
· Breukink, E., van Kraaij, C., Demel, R.A., Siezen, R.J., Kuipers, O.P. and de Kruijff, B. (1997). The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry, 36(23): 6968-6976.
· Cao-Hoang, L., Marechal, P., Le-Thanh, M. and Gervais, P. (2008). Synergistic action of rapid chilling and nisin on the inactivation of Escherichia coli. Applied Microbiology and Biotechnology, 79(1): 105-109.
· Casey, J., O'Cleirigh, C., Walsh, P. and O'Shea, D. (2004). Development of a robust microtiter plate-based assay method for assessment of bioactivity. Journal of microbiological methods, 58(3): 327-334.
· Chen, H., Davidson, P.M. and Zhong, Q. (2014). Antimicrobial properties of nisin after glycation with lactose, maltodextrin and dextran and the thyme oil emulsions prepared thereof. International Journal of food microbiology, 191: 75-81.
· Cleveland, J., Montville, T.J., Nes, I.F. and Chikindas, M.L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of food microbiology, 71(1): 1-20.
· Driessen, A.J., van den Hooven, H.W., Kuiper, W., van de Kamp, M., Sahl, H.G., Konings, R.N., et al. (1995). Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry, 34(5): 1606-1614.
· Elliason, D. and Tatini, S. (1999). Enhanced inactivation of Salmonella typhimurium and verotoxigenic Escherichia coli by nisin at 6· 5° C. Food Microbiology, 16(3): 257-267.
· Gerrard, J., Brown, P. and Fayle, S. (2003). Maillard crosslinking of food proteins III: the effects of glutaraldehyde, formaldehyde and glyceraldehyde upon bread and croissants. Food Chemistry, 80(1): 45-50.
· Govaris, A., Solomakos, N., Pexara, A. and Chatzopoulou, P. (2010). The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. International Journal of food microbiology, 137(2): 175-180.
· Khan, I. and Oh, D.-H. (2016). Integration of nisin into nanoparticles for application in foods. Innovative Food Science & Emerging Technologies, 34(376-384.
· Lertittikul, W., Benjakul, S. and Tanaka, M. (2007). Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chemistry, 100(2): 669-677.
· Liu, J., Ru, Q. and Ding, Y. (2012). Glycation a promising method for food protein modification: physicochemical properties and structure, a review. Food Research International, 49(1): 170-183.
· Masschalck, B., Garcı́, C., Van Haver, E. and Michiels, C.W. (2000). Inactivation of high pressure resistant Escherichia coli by lysozyme and nisin under high pressure. Innovative Food Science & Emerging Technologies, 1(1): 39-47.
· Medrano, A., Abirached, C., Panizzolo, L., Moyna, P. and Añón, M. (2009). The effect of glycation on foam and structural properties of β-lactoglobulin. Food chemistry, 113(1): 127-133.
· Molinos, A.C., Abriouel, H., López, R.L., Valdivia, E., Omar, N.B. and Gálvez, A. (2008). Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food and chemical toxicology, 46(8): 2912-2921.
· Moosavy, M.-H., Basti, A.A., Misaghi, A., Salehi, T.Z., Abbasifar, R., Mousavi, H.A.E., et al. (2008). Effect of Zataria multiflora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Research International, 41(10): 1050-1057.
· Mulders, J.W., Boerrigter, I.J., ROLLEMA, H.S., SIEZEN, R.J. and VOS, W.M. (1991). Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. European Journal of Biochemistry, 201(3): 581-584.
· Muppalla, R., Sonavale, R., Chawla, S. and Sharma, A. (2012). Functional properties of nisin–carbohydratec onjugates formed by radiation induced Maillard reaction. Radiation Physics and Chemistry, 81(12): 1917-1922.
· Nielsen, P., Petersen, D. and Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of food science, 66(5): 642-646.
· Prudêncio, C.V., Dos Santos, M.T. and Vanetti, M.C.D. (2015). Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. Journal of food science and technology, 52(9): 5408-5417.
· Sahl, H.G., Kordel, M. and Benz, R. (1987). Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol, 149(2): 120-124.
· Sant’Anna, V., Cladera-Olivera, F. and Brandelli, A. (2012). Kinetic and thermodynamic study of thermal inactivation of the antimicrobial peptide P34 in milk. Food Chemistry, 130(1): 84-89.
· Sato, R., Sawabe, T. and Saeki, H. (2005). Characterization of fish myofibrillar protein by conjugation with alginate oligosaccharide prepared using genetic recombinant alginate lyase. Journal of food science, 70(1): C58-C62.
· Stevens, K., Sheldon, B., Klapes, N. and Klaenhammer, T. (1991). Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Applied and Environmental Microbiology, 57(12): 3613-3615.
· Usui, M., Tamura, H., Nakamura, K., Ogawa, T., Muroshita, M., Azakami, H., et al. (2004). Enhanced bactericidal action and masking of allergen structure of soy protein by attachment of chitosan through Maillard‐type protein‐polysaccharide conjugation. Food/Nahrung, 48(1): 69-72.
· Viedma, P.M., López, A.S., Omar, N.B., Abriouel, H., López, R.L., Valdivia, E., et al. (2008). Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. International Journal of food microbiology, 128(2): 244-249.
· Zhou, L., van Heel, A.J., Montalban-Lopez, M. and Kuipers, O.P. (2016). Potentiating the activity of nisin against Escherichia coli. Frontiers in cell and developmental biology, 4(7): 1-9.
· Zhu, D., Damodaran, S. and Lucey, J.A. (2010). Physicochemical and emulsifying properties of whey protein isolate (WPI)− dextran conjugates produced in aqueous solution. Journal of agricultural and food chemistry, 58(5): 2988-2994.
_||_
· Abdullah, S.U., Badaruddin, M., Ali, R. and Riaz, M.N. (2010). Effect of elementary and advanced glycation products of nisin on its preservative efficacy and digestibility. Food Chemistry, 122(4): 1043-1046.
· Boziaris, I. and Adams, M. (1999). Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram negatives. International Journal of food microbiology, 53(2): 105-113.
· Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(248-254.
· Breukink, E., van Heusden, H.E., Vollmerhaus, P.J., Swiezewska, E., Brunner, L., Walker, S., et al. (2003). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. Journal of Biological Chemistry, 278(22): 19898-19903.
· Breukink, E., van Kraaij, C., Demel, R.A., Siezen, R.J., Kuipers, O.P. and de Kruijff, B. (1997). The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry, 36(23): 6968-6976.
· Cao-Hoang, L., Marechal, P., Le-Thanh, M. and Gervais, P. (2008). Synergistic action of rapid chilling and nisin on the inactivation of Escherichia coli. Applied Microbiology and Biotechnology, 79(1): 105-109.
· Casey, J., O'Cleirigh, C., Walsh, P. and O'Shea, D. (2004). Development of a robust microtiter plate-based assay method for assessment of bioactivity. Journal of microbiological methods, 58(3): 327-334.
· Chen, H., Davidson, P.M. and Zhong, Q. (2014). Antimicrobial properties of nisin after glycation with lactose, maltodextrin and dextran and the thyme oil emulsions prepared thereof. International Journal of food microbiology, 191: 75-81.
· Cleveland, J., Montville, T.J., Nes, I.F. and Chikindas, M.L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of food microbiology, 71(1): 1-20.
· Driessen, A.J., van den Hooven, H.W., Kuiper, W., van de Kamp, M., Sahl, H.G., Konings, R.N., et al. (1995). Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry, 34(5): 1606-1614.
· Elliason, D. and Tatini, S. (1999). Enhanced inactivation of Salmonella typhimurium and verotoxigenic Escherichia coli by nisin at 6· 5° C. Food Microbiology, 16(3): 257-267.
· Gerrard, J., Brown, P. and Fayle, S. (2003). Maillard crosslinking of food proteins III: the effects of glutaraldehyde, formaldehyde and glyceraldehyde upon bread and croissants. Food Chemistry, 80(1): 45-50.
· Govaris, A., Solomakos, N., Pexara, A. and Chatzopoulou, P. (2010). The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. International Journal of food microbiology, 137(2): 175-180.
· Khan, I. and Oh, D.-H. (2016). Integration of nisin into nanoparticles for application in foods. Innovative Food Science & Emerging Technologies, 34(376-384.
· Lertittikul, W., Benjakul, S. and Tanaka, M. (2007). Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chemistry, 100(2): 669-677.
· Liu, J., Ru, Q. and Ding, Y. (2012). Glycation a promising method for food protein modification: physicochemical properties and structure, a review. Food Research International, 49(1): 170-183.
· Masschalck, B., Garcı́, C., Van Haver, E. and Michiels, C.W. (2000). Inactivation of high pressure resistant Escherichia coli by lysozyme and nisin under high pressure. Innovative Food Science & Emerging Technologies, 1(1): 39-47.
· Medrano, A., Abirached, C., Panizzolo, L., Moyna, P. and Añón, M. (2009). The effect of glycation on foam and structural properties of β-lactoglobulin. Food chemistry, 113(1): 127-133.
· Molinos, A.C., Abriouel, H., López, R.L., Valdivia, E., Omar, N.B. and Gálvez, A. (2008). Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food and chemical toxicology, 46(8): 2912-2921.
· Moosavy, M.-H., Basti, A.A., Misaghi, A., Salehi, T.Z., Abbasifar, R., Mousavi, H.A.E., et al. (2008). Effect of Zataria multiflora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Research International, 41(10): 1050-1057.
· Mulders, J.W., Boerrigter, I.J., ROLLEMA, H.S., SIEZEN, R.J. and VOS, W.M. (1991). Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. European Journal of Biochemistry, 201(3): 581-584.
· Muppalla, R., Sonavale, R., Chawla, S. and Sharma, A. (2012). Functional properties of nisin–carbohydratec onjugates formed by radiation induced Maillard reaction. Radiation Physics and Chemistry, 81(12): 1917-1922.
· Nielsen, P., Petersen, D. and Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of food science, 66(5): 642-646.
· Prudêncio, C.V., Dos Santos, M.T. and Vanetti, M.C.D. (2015). Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. Journal of food science and technology, 52(9): 5408-5417.
· Sahl, H.G., Kordel, M. and Benz, R. (1987). Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol, 149(2): 120-124.
· Sant’Anna, V., Cladera-Olivera, F. and Brandelli, A. (2012). Kinetic and thermodynamic study of thermal inactivation of the antimicrobial peptide P34 in milk. Food Chemistry, 130(1): 84-89.
· Sato, R., Sawabe, T. and Saeki, H. (2005). Characterization of fish myofibrillar protein by conjugation with alginate oligosaccharide prepared using genetic recombinant alginate lyase. Journal of food science, 70(1): C58-C62.
· Stevens, K., Sheldon, B., Klapes, N. and Klaenhammer, T. (1991). Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Applied and Environmental Microbiology, 57(12): 3613-3615.
· Usui, M., Tamura, H., Nakamura, K., Ogawa, T., Muroshita, M., Azakami, H., et al. (2004). Enhanced bactericidal action and masking of allergen structure of soy protein by attachment of chitosan through Maillard‐type protein‐polysaccharide conjugation. Food/Nahrung, 48(1): 69-72.
· Viedma, P.M., López, A.S., Omar, N.B., Abriouel, H., López, R.L., Valdivia, E., et al. (2008). Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. International Journal of food microbiology, 128(2): 244-249.
· Zhou, L., van Heel, A.J., Montalban-Lopez, M. and Kuipers, O.P. (2016). Potentiating the activity of nisin against Escherichia coli. Frontiers in cell and developmental biology, 4(7): 1-9.
· Zhu, D., Damodaran, S. and Lucey, J.A. (2010). Physicochemical and emulsifying properties of whey protein isolate (WPI)− dextran conjugates produced in aqueous solution. Journal of agricultural and food chemistry, 58(5): 2988-2994.