تأثیر لاکتوباسیلوس پلانتاروم بر جمعیت میکروبی خیارهای تخمیری ایرانی
الموضوعات :
زهرا نیلچیان
1
,
سید هادی رضوی
2
,
ابراهیم رحیمی
3
1 - دانشگاه آزاد اسلامی، واحد شهرکرد، دانشکده کشاورزی، دانشجوی کارشناسی ارشد رشته مهندسی صنایع غذایی، شهرکرد، ایران
2 - دانشیار گروه صنایع غذایی، دانشگاه تهران، تهران، ایران
3 - دانشگاه آزاد اسلامی، واحد شهرکرد، دانشکده کشاورزی، دانشیار گروه صنایع غذایی، شهرکرد، ایران.
تاريخ الإرسال : 19 السبت , رجب, 1433
تاريخ التأكيد : 28 الثلاثاء , جمادى الأولى, 1434
تاريخ الإصدار : 04 الأربعاء , شوال, 1433
الکلمات المفتاحية:
لاکتوباسیلوس پلانتاروم,
خیارهای تخمیری,
جمعیت میکروبی,
ملخص المقالة :
تخمیر خیار یک فرآیند طبیعی میباشد که میکرواورگانیسمهای آن در کیفیت محصول مؤثرند و در این محصول گونههای متعلق به گروه لاکتوباسیلوس پلانتاروم دارای مزیتهای بسیاری برای فرآیند تخمیر میباشند. در این بررسی برای تولید محصولی ایمن و یکنواخت، خیارهای بومی درمحلولهای آب نمک 5 و 7% کلرید سدیم تحت شرایط بدون تلقیح و نیز cfu/ml108×6، 107×4، 106×4ماده تلقیح از گونه خاصلاکتوباسیلوس پلانتارومقرار داده شدهوسپس جمعیت میکروبی برای پانزده روز تخمیر در دمای محیطو سی روز انبار در دمای 4 و 25 درجه سلسیوسبا استفاده از آنالیز واریانس در سطح اطمینان 95% بررسی شده است. در این بررسی، در روز نهم تخمیر نمونه هایبا میزان تلقیح بالا (cfu/ml 108´ 6) و دارای 5% محلول کلرید سدیمبیشترین میزان جمعیت لاکتوباسیلوس پلانتاروم ( log10 cfu/ml57/8)را نشان داده اند.اما با میزان تلقیح بیشتر و غلظت نمک 7% حداقل میزان مخمر و مزوفیل هوازیدر نمونهها مشاهده شده است. در طولانبار، جمعیت لاکتوباسیلوس پلانتاروم، مخمرها و مزوفیل های هوازی در دمای 25 درجه بالاتر از دمای4درجه سلسیوسبوده استاماتغییر مهم در روز سیام انبارمشاهدهشده است که میزانلاکتوباسیلوس پلانتاروم( log10 cfu/ml 47/5)در محلول نمک 7% و دمای 4 درجه سلسیوسبا شرایط رقابتی کمتر و محیطی مناسب نسبت به دیگر میکرواورگانیسمها بالاتر بوده است.بنابراین در این بررسی با رشد مناسب لاکتوباسیلوس پلانتاروم و جلوگیری از رشد میکرواورگانیسمهای بیماریزا و غیربیماریزا در نمونههای تلقیح شده،محصولی ایمن و یکنواخت تولید شده است.
المصادر:
Abriouel, H., Benomar, N., Lucas, R. and Galvez, R. (2011).Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Alorena green table olives. International Journal of Food Microbiology, 144: 487-496.
Bautista-Gallego, J., Arroyo-Lopez, F.N., Duran-Quintana, M.C. and Garrido-Fernandez, A. (2010). Fermentation profiles of Manzanilla-Alorena cracked green table olives in different chloride salt mixtures. Food Microbiology, 27: 403-412.
Caggia, C., Randazzo, C.L., Di Salvo, M., Romeo, F. and Giudici, P. (2004).Occurrence of Listeria monocytogenes in green table olives. Journal of Food Protection, 67: 2189-2194.
Castro, A., Montano, A., Casado, F.J., Sanchez, A.H. and Rejano, L. (2002). Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol, 19: 637-644.
Chammem, N., Kachouri, M., Mejri, M., Peres, C., Boudabous, A. and Hamdi, M. (2005).Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process. Bioresource Technology, 96: 1311-1316.
Charalampopoulos, D., Pandiella, S.S. and Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology,82(2): 133-141.
Charalampopoulos, D. and Pandiella, S.S. (2010). Survival of human derived Lactobacillus plantarum in fermented cereal extracts during refrigerated storage. LWT-Food Science and Technology, 43: 431-435.
Gardner, J.N., Savard, T., Obermeier, P., Caldwell, G. and Champagne, C.P.(2001).Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. International Journal of Food Microbiology, 64: 261-275.
Garrido Fernandez, A., Garcia Garcia, P. and Brenes Balbuena, M. (1995).Olive fermentations.In Rehm, H.J. and Reed, G. (Editors.). Biotechnology: Enzymes, biomass, food and feed. New York, VCH, pp. 593-627.
Garrido-Fernandez, A., Fernandez Diez, M.J. and Adams, M.R. (1997). Table Olives: Production and Processing. Chapman and Hall, London.
Kabadjova, P., Dousset, X., Le Cam, V. and Prevost, H. (2002).Differentiation of closely related Carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Applied and Environmental Microbiology, 68: 5358-5366.
Leal-Sanchez, M.V., Ruiz-Barba, J.L., Sanchez, A.H., Rejano, L., Jimenez-Dıaz, R. and Garrido, A. (2003).Fermentation profile and optimization of green olive fermentation using Lactobacillus plantarum LPCO10 as a starter culture. Food Microbiology, 20: 421-430.
Lucke, F.K. (2000). Utilization of microbes to process and preserve meats. Meat Science, 56: 105-115.
Milesi, M.M., McSweeney, P.L.H. and Hynes, E.R. (2008). Viability and contribution to proteolysis of an adjunct culture of Lactobacillus plantarum in two model cheese systems: cheddar cheese-type and soft-cheese type. Journal of Applied Microbiology, 105: 884-892.
Ozay, G. andBorcakli, M. (1995).Effect of brine replacement and salt concentration on the fermentation of naturally black olives. Food Research International, 28: 553-559.
Panagou, E.Z, Schillinger, U., Franz, C.M.A.P. and Nychas, G.J.E. (2008). Microbiological and biochemical profile of cv. Conservoleagreen olives processed by the Spanish-method. Food Microbiol, 23: 199-204.
Paramithiotis, S., Hondrodimou, O.L. and Drosinos, E.H.(2010). Development of the microbial community during spontaneous cauliflower fermentation. Food Research International, 43: 1098-1103.
Penas, E., Frias, J., Gomez, R. and Vidal-Valverde, C. (2010). High hydrostatic pressure can improve the microbial quality of sauerkraut during storage, Spain. Food Control, 21: 524-528.
Plengvidhya, V., Breidt Jr., F., Lu, Z. and Fleming, H.P. (2007).DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology, 73: 7697-7702.
Rodriguez-Gomez, F., Arroyo-Lopez, F.N., Lopez-Lopez, A., Bautista-Gallego, J. and Garrido-Fernandez, A. (2010). Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiology, 27: 604-612.
Romick, T.L. (1994). Biocontrol of Listeria monocytogenes, a psychrotrophic pathogen model, in low salt, non-acidified, refrigerated vegetable products. PhD Diss, NC State University.Raleigh, NC.
Sanchez, I., Palop, L. and Ballesteros, C. (2000). Biochemical characterization of lactic acid bacteria isolated from spontaneous fermentation of 'Almagro' eggplants. International Journal of Food Microbiology, 59: 9-17.
Singh, A.K. and Ramesh, A. (2008). Succession of dominant and antagonistic lactic acid bacteria in fermented cucumber: Insights from a PCR-based approach. Food Microbiology, 25: 278-287.
Tamang, J.P., Tamang, B., Schillinger, U., Guigas, C. and Holzapfel, W.H.(2009). Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. International Journal of Food Microbiology, 135: 28-33.
Todorov, S.D. and Dicks,L.M.T. (2005). Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology, 36: 318-326.
Tsai, C.C., Lai, C.H., Yu, B. and Tsen, H.Y. (2010). Use of PCR primers and probes based on the 23S rRNA and internal transcription spacer (ITS) gene sequence for the detection and enumerization of Lactobacillus acidophilus and Lactobacillus plantarum in feed supplements. Anaerobe, 16: 270-277.
Tsapatsaris, S. and Kotzekidou, P. (2004). Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. International Journal of Food Microbiology, 95: 157-168.
_||_
Abriouel, H., Benomar, N., Lucas, R. and Galvez, R. (2011).Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Alorena green table olives. International Journal of Food Microbiology, 144: 487-496.
Bautista-Gallego, J., Arroyo-Lopez, F.N., Duran-Quintana, M.C. and Garrido-Fernandez, A. (2010). Fermentation profiles of Manzanilla-Alorena cracked green table olives in different chloride salt mixtures. Food Microbiology, 27: 403-412.
Caggia, C., Randazzo, C.L., Di Salvo, M., Romeo, F. and Giudici, P. (2004).Occurrence of Listeria monocytogenes in green table olives. Journal of Food Protection, 67: 2189-2194.
Castro, A., Montano, A., Casado, F.J., Sanchez, A.H. and Rejano, L. (2002). Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol, 19: 637-644.
Chammem, N., Kachouri, M., Mejri, M., Peres, C., Boudabous, A. and Hamdi, M. (2005).Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process. Bioresource Technology, 96: 1311-1316.
Charalampopoulos, D., Pandiella, S.S. and Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology,82(2): 133-141.
Charalampopoulos, D. and Pandiella, S.S. (2010). Survival of human derived Lactobacillus plantarum in fermented cereal extracts during refrigerated storage. LWT-Food Science and Technology, 43: 431-435.
Gardner, J.N., Savard, T., Obermeier, P., Caldwell, G. and Champagne, C.P.(2001).Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. International Journal of Food Microbiology, 64: 261-275.
Garrido Fernandez, A., Garcia Garcia, P. and Brenes Balbuena, M. (1995).Olive fermentations.In Rehm, H.J. and Reed, G. (Editors.). Biotechnology: Enzymes, biomass, food and feed. New York, VCH, pp. 593-627.
Garrido-Fernandez, A., Fernandez Diez, M.J. and Adams, M.R. (1997). Table Olives: Production and Processing. Chapman and Hall, London.
Kabadjova, P., Dousset, X., Le Cam, V. and Prevost, H. (2002).Differentiation of closely related Carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Applied and Environmental Microbiology, 68: 5358-5366.
Leal-Sanchez, M.V., Ruiz-Barba, J.L., Sanchez, A.H., Rejano, L., Jimenez-Dıaz, R. and Garrido, A. (2003).Fermentation profile and optimization of green olive fermentation using Lactobacillus plantarum LPCO10 as a starter culture. Food Microbiology, 20: 421-430.
Lucke, F.K. (2000). Utilization of microbes to process and preserve meats. Meat Science, 56: 105-115.
Milesi, M.M., McSweeney, P.L.H. and Hynes, E.R. (2008). Viability and contribution to proteolysis of an adjunct culture of Lactobacillus plantarum in two model cheese systems: cheddar cheese-type and soft-cheese type. Journal of Applied Microbiology, 105: 884-892.
Ozay, G. andBorcakli, M. (1995).Effect of brine replacement and salt concentration on the fermentation of naturally black olives. Food Research International, 28: 553-559.
Panagou, E.Z, Schillinger, U., Franz, C.M.A.P. and Nychas, G.J.E. (2008). Microbiological and biochemical profile of cv. Conservoleagreen olives processed by the Spanish-method. Food Microbiol, 23: 199-204.
Paramithiotis, S., Hondrodimou, O.L. and Drosinos, E.H.(2010). Development of the microbial community during spontaneous cauliflower fermentation. Food Research International, 43: 1098-1103.
Penas, E., Frias, J., Gomez, R. and Vidal-Valverde, C. (2010). High hydrostatic pressure can improve the microbial quality of sauerkraut during storage, Spain. Food Control, 21: 524-528.
Plengvidhya, V., Breidt Jr., F., Lu, Z. and Fleming, H.P. (2007).DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology, 73: 7697-7702.
Rodriguez-Gomez, F., Arroyo-Lopez, F.N., Lopez-Lopez, A., Bautista-Gallego, J. and Garrido-Fernandez, A. (2010). Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiology, 27: 604-612.
Romick, T.L. (1994). Biocontrol of Listeria monocytogenes, a psychrotrophic pathogen model, in low salt, non-acidified, refrigerated vegetable products. PhD Diss, NC State University.Raleigh, NC.
Sanchez, I., Palop, L. and Ballesteros, C. (2000). Biochemical characterization of lactic acid bacteria isolated from spontaneous fermentation of 'Almagro' eggplants. International Journal of Food Microbiology, 59: 9-17.
Singh, A.K. and Ramesh, A. (2008). Succession of dominant and antagonistic lactic acid bacteria in fermented cucumber: Insights from a PCR-based approach. Food Microbiology, 25: 278-287.
Tamang, J.P., Tamang, B., Schillinger, U., Guigas, C. and Holzapfel, W.H.(2009). Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. International Journal of Food Microbiology, 135: 28-33.
Todorov, S.D. and Dicks,L.M.T. (2005). Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology, 36: 318-326.
Tsai, C.C., Lai, C.H., Yu, B. and Tsen, H.Y. (2010). Use of PCR primers and probes based on the 23S rRNA and internal transcription spacer (ITS) gene sequence for the detection and enumerization of Lactobacillus acidophilus and Lactobacillus plantarum in feed supplements. Anaerobe, 16: 270-277.
Tsapatsaris, S. and Kotzekidou, P. (2004). Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. International Journal of Food Microbiology, 95: 157-168.