بررسی خاصیت آنتیاکسیدانی و ضدمیکروبی بیوسورفکتانتهای مشتق شده از لاکتوباسیلوس پلانتاروم، لاکتوباسیلوس پنتوزوس و لاکتوباسیلوس کازئی
الموضوعات :
بهزاد اکبرزاده نجار
1
,
پیمان آریایی
2
,
مهرو اسماعیلی
3
,
رویا باقری
4
1 - گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی، آمل، ایران
2 - گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی، آمل، ایران
3 - گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی، آمل، ایران
4 - گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی، آمل، ایران
تاريخ الإرسال : 15 الخميس , رمضان, 1444
تاريخ التأكيد : 01 الإثنين , ذو الحجة, 1444
تاريخ الإصدار : 29 الثلاثاء , شعبان, 1444
الکلمات المفتاحية:
DPPH,
استافیلوکوکوس اورئوس,
لاکتوباسیلوس,
بیوسورفکتانت,
هیدروکسیل,
ملخص المقالة :
بیوسورفکتانتها ترکیبات آمفی پاتیکی هستند که توسط بسیاری از میکروارگانیسمها تولید میشوند و به علت ویژگی های منحصر به فردشان طیف وسیعی از فعالیتهای بیولوژیکی را از خود نشان می دهند. هدف از این مطالعه تعیین پتانسیل آنتی اکسیدانی و ضد میکروبی بیوسورفکتانتهای جدا شده از لاکتوباسیلوس پلانتاروم، لاکتوباسیلوس پنتوزوس و لاکتوباسیلوس کازئی بوده است. فعالیت آنتی اکسیدانی بیوسورفکتانت در شرایط آزمایشگاهی با استفاده از توانایی مهار رادیکال های آزاد2,2-Diphenyl-1-picrylhydrazyl (DPPH) و هیدروکسیل و فعالیت های ضد میکروبی با استفاده از روش انتشار در چاهک آگار علیه باکتری های پاتوژن مورد ارزیابی قرار گرفت. نتایج نشان داد که فعالیت مهاری DPPH و هیدروکسیل بیوسورفکتانت ها در غلظت 5 میلی گرم در میلی لیتر به ترتیب 51/78-99/81 درصد و 51/69- 56/71 درصد بود و بالاترین فعالیت آنتی اکسیدانی مربوط به لاکتوباسیلوس پلانتاروم بود (05/0>P). نتایج مهار رشد میکروبی نشان داد تمامی بیوسورفاکتانت ها فعالیت ضد میکروبی بالایی داشتند و فعالیت ضد میکروبی علیه باکتری استافیلوکوکوس اورئوس (گرم مثبت) بالاتر از سایر باکتری ها (گرم منفی) بود (05/0>P). فعالیت ضد میکروبی بیوسورفاکتانت های مختلف، اختلاف معنی داری نسبت به هم نداشتند. در مجموع بر اساس نتایج حاصله، به نظر می رسد میتوان از بیوسورفکتانتهای حاصل از لاکتوباسیلوس ها بهعنوان آنتیاکسیدان و ضد میکروب طبیعی در صنایع غذایی و دارویی استفاده نمود.
المصادر:
Abdollahi, S., Tofighi, Z., Babaee, T., Shamsi, M., Rahimzadeh, G., Rezvanifar, H., et al. (2020). Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa. Iranian Journal of Pharmaceutical Research, 19 (2): 115-126.
Abriouel, H., Pérez Montoro, B., Casimiro-Soriguer, C.S., Pérez Pulido, A.J., Knapp, C.W., Caballero Gómez, N., Castillo-Gutiérrez, S., Estudillo-Martínez. M.D., Gálvez, A. and Benomar, N. (2017). Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Front Microbiollogy, 8:891, 1-17.
Amiri, S., Rezazadeh-Bari, M., Alizadeh Khaledabad, M. and Amiri, S. (2019). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2): 423-432.
Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F. and Zhao, J. (2014). Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35: 65–72.
Didar, Z. 2019. The effect of biosurfactant of saccharomyces cerevisiae on biofilms produced by staphylococcus aureus, epidermidis and saprophyticus: A Laboratory Study. Journal of Rafsanjan University of Medical Sciences, 18 (5):441-454.
Giri, S. S., Ryu, E., Sukumaran, V. and Chang Park, S. 2019. Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial Pathogenesis, 113: 66- 72.
Gomaa, E. Z. (2013). Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. Journal of General and Applied Microbiology, 59: 425–436.
In`es, M. and Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 71: 100–112.
Merghni, M., Ben Nejma, I., Helali, H., Hentati, A., Bongiovanni, F., Lafont, M., Aouni, M. and Mastouri, M. (2015). Assessment of adhesion, invasion and cytotoxicity potential of oral Staphylococcus aureus strains, Microb. Pathog, 86:1–9.
Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H. and Tobji, S., (2017). Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathogenesis, 104: 84–89.
Moo-Huchin, V. M., Moo-Huchin, M. I., Estrada-León, R. J., Cuevas-Glory, L., Estrada-Mota, I.A., et al. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166, 17–22.
Morais, I. M. C., Cordeiro, A. L., Teixeira, G. S., Domingues, V. S., Nardi, R. M. D. and Monteiro, A. S., et al. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri - P 65. Microbial Cell Factories, 1–15.
Mouafo, H. T., Mbawala, A., Tanaji, K., Somashekar, D., and Ndjouenkeu, R. (2020). Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT- Food Science and Technology, 110071, 133, 1-8.
Nieva-Echevarria, M.J., Manzanos, E., Goicoechea, M.D. and Guillen, M. (2015). 2,6-di-tert-butylhydroxytoluene and its metabolites in foods. Comprehensive Reviews in Food Science and Food Safety, 14: 67–80.
Sambanthamoorthy, K., Feng, X., Patel, R., Patel, S. and Paranavitana, C. (2014). Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology, 14(1): 1-9.
Sandri, D. and Kholiq M. A. (2018). Biosurfactant producing bacteria from oil contaminated soil: Screening, identification, and process optimization. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 1(2):49-56.
Saravanakumari, P. and Mani, K. (2010). Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multidrug resistant pathogens, Bioresource Technology, 101 (22): 8851-8854.
Secato, J. F. F., dos Santos, B. F., Ponezi, A. N. and Tambourgi, E.B. (2017). Optimization Techniques and Development of Neural Models Applied in Biosurfactant Production by Bacillus subtilis Using Alternative Substrates. Advances in Bioscience and Biotechnology, 8 (10):343- 360
Sharma, B.S., Saharan, N., Chauhan, A., Bansal, S. and Procha, S. (2014). Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Scientific World Journal, 493548.
Varedesara MS, Ariaii P, Hesari J. (2021). The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Science & Nutrition, 9:2180–2190.
Soltan-Dallal, M. M. and Didar Z. (2019). Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms. Feyz, 23 (3) :261-268.
Suresh Chander, C.R., Lohitnath, T., Mukesh Kumar, D. J. and Kalaichelvan, P.T. (2012). Production and characterization of biosurfactant from bacillus subtilis MTCC441 and its evaluation to use asbioemulsifier for food bio – preservative. Advances in Applied Science Research, 3 (3):1827-1831.
Wouters, D., Grosu-Tudor, S., Zamfir, M and De Vuyst, L. (2013). Applicability of Lactobacillus plantarum IMDO 788 as a starter culture to control vegetable fermentations. Journal of the Science of Food and Agriculture, 93 (13): 3352- 61.
Yan, X., Gu, S., Cui, X., Shi, Y., Wen, S., Chen, H. and Ge, J. (2019). Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis, 127: 12–20.
Yehye, N.A., Rahman, A., Ariffin, S.B., Abd Hamid, A.A., Alhadi, F.A., et al. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. European Journal of Medicinal Chemistry, 101: 295-312.
Zhai, R., Yin, L., Yu, G., Wang, F., Tian, R., et al. (2015). Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 54: 23–30
_||_
Abdollahi, S., Tofighi, Z., Babaee, T., Shamsi, M., Rahimzadeh, G., Rezvanifar, H., et al. (2020). Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa. Iranian Journal of Pharmaceutical Research, 19 (2): 115-126.
Abriouel, H., Pérez Montoro, B., Casimiro-Soriguer, C.S., Pérez Pulido, A.J., Knapp, C.W., Caballero Gómez, N., Castillo-Gutiérrez, S., Estudillo-Martínez. M.D., Gálvez, A. and Benomar, N. (2017). Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Front Microbiollogy, 8:891, 1-17.
Amiri, S., Rezazadeh-Bari, M., Alizadeh Khaledabad, M. and Amiri, S. (2019). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2): 423-432.
Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F. and Zhao, J. (2014). Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35: 65–72.
Didar, Z. 2019. The effect of biosurfactant of saccharomyces cerevisiae on biofilms produced by staphylococcus aureus, epidermidis and saprophyticus: A Laboratory Study. Journal of Rafsanjan University of Medical Sciences, 18 (5):441-454.
Giri, S. S., Ryu, E., Sukumaran, V. and Chang Park, S. 2019. Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial Pathogenesis, 113: 66- 72.
Gomaa, E. Z. (2013). Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. Journal of General and Applied Microbiology, 59: 425–436.
In`es, M. and Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 71: 100–112.
Merghni, M., Ben Nejma, I., Helali, H., Hentati, A., Bongiovanni, F., Lafont, M., Aouni, M. and Mastouri, M. (2015). Assessment of adhesion, invasion and cytotoxicity potential of oral Staphylococcus aureus strains, Microb. Pathog, 86:1–9.
Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H. and Tobji, S., (2017). Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathogenesis, 104: 84–89.
Moo-Huchin, V. M., Moo-Huchin, M. I., Estrada-León, R. J., Cuevas-Glory, L., Estrada-Mota, I.A., et al. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166, 17–22.
Morais, I. M. C., Cordeiro, A. L., Teixeira, G. S., Domingues, V. S., Nardi, R. M. D. and Monteiro, A. S., et al. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri - P 65. Microbial Cell Factories, 1–15.
Mouafo, H. T., Mbawala, A., Tanaji, K., Somashekar, D., and Ndjouenkeu, R. (2020). Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT- Food Science and Technology, 110071, 133, 1-8.
Nieva-Echevarria, M.J., Manzanos, E., Goicoechea, M.D. and Guillen, M. (2015). 2,6-di-tert-butylhydroxytoluene and its metabolites in foods. Comprehensive Reviews in Food Science and Food Safety, 14: 67–80.
Sambanthamoorthy, K., Feng, X., Patel, R., Patel, S. and Paranavitana, C. (2014). Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology, 14(1): 1-9.
Sandri, D. and Kholiq M. A. (2018). Biosurfactant producing bacteria from oil contaminated soil: Screening, identification, and process optimization. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 1(2):49-56.
Saravanakumari, P. and Mani, K. (2010). Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multidrug resistant pathogens, Bioresource Technology, 101 (22): 8851-8854.
Secato, J. F. F., dos Santos, B. F., Ponezi, A. N. and Tambourgi, E.B. (2017). Optimization Techniques and Development of Neural Models Applied in Biosurfactant Production by Bacillus subtilis Using Alternative Substrates. Advances in Bioscience and Biotechnology, 8 (10):343- 360
Sharma, B.S., Saharan, N., Chauhan, A., Bansal, S. and Procha, S. (2014). Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Scientific World Journal, 493548.
Varedesara MS, Ariaii P, Hesari J. (2021). The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Science & Nutrition, 9:2180–2190.
Soltan-Dallal, M. M. and Didar Z. (2019). Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms. Feyz, 23 (3) :261-268.
Suresh Chander, C.R., Lohitnath, T., Mukesh Kumar, D. J. and Kalaichelvan, P.T. (2012). Production and characterization of biosurfactant from bacillus subtilis MTCC441 and its evaluation to use asbioemulsifier for food bio – preservative. Advances in Applied Science Research, 3 (3):1827-1831.
Wouters, D., Grosu-Tudor, S., Zamfir, M and De Vuyst, L. (2013). Applicability of Lactobacillus plantarum IMDO 788 as a starter culture to control vegetable fermentations. Journal of the Science of Food and Agriculture, 93 (13): 3352- 61.
Yan, X., Gu, S., Cui, X., Shi, Y., Wen, S., Chen, H. and Ge, J. (2019). Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis, 127: 12–20.
Yehye, N.A., Rahman, A., Ariffin, S.B., Abd Hamid, A.A., Alhadi, F.A., et al. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. European Journal of Medicinal Chemistry, 101: 295-312.
Zhai, R., Yin, L., Yu, G., Wang, F., Tian, R., et al. (2015). Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 54: 23–30