مقایسه روش الکتروفورز موئینه ای با آشکارساز جذبی با روش کروماتوگرافی مایع با عملکرد بالا برای اندازه گیری مقدار هیستامین در محیط کشت میکروبی
الموضوعات :
صفورا پشگه
1
,
سید شهرام شکرفروش
2
,
محمود امین لاری
3
,
سعید حسین زاده
4
1 - دانشجوی دکتری تخصصی بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
2 - استاد بخش بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
3 - استاد بخش بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
4 - دانشیار بخش بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران
تاريخ الإرسال : 17 الخميس , جمادى الثانية, 1438
تاريخ التأكيد : 02 الأحد , رمضان, 1438
تاريخ الإصدار : 04 الأربعاء , رجب, 1439
الکلمات المفتاحية:
کروماتوگرافی مایع با عملکرد بالا,
هیستامین,
الکتروفورزموئینه ای,
ملخص المقالة :
هیستامین یکی از شاخص های مهم فساد باکتریایی در مواد غذایی است که می تواند موجب مسمومیت در مصرف کنندگان شود. بنابراین شناسایی و اندازه گیری مقدار هیستامین در مواد غذایی از اهمیت بهسزایی برخوردار است. در این تحقیق، دو روش کروماتوگرافی مایع با عملکرد بالا (HPLC) بهعنوان روش مرجع و الکتروفورز موئینه ای با آشکار ساز جذبی (CZE) برای اندازه گیری مقدار هیستامین تولیدی در محیط کشت TSB با هم مقایسه شدند. برای این منظور محیط کشت با سوش استاندارد مولد هیستامین استافیلوکوکوس اپیدرمیدیس TYH1 و دو سوش استافیلوکوکوس کاپیتیس و استافیلوکوکوس کارنوسوس دارای ژن هیستیدین دکربوکسیلاز تلقیح شد. زمان مهاجرت در روش CZE و زمان بازداری در روش HPLC برای هیستامین بهترتیب 4/5 و 0/12 دقیقه بهدست آمد. منحنی استاندارد در محدوده µg/ml 200- 25/6 بهصورت خطی با هر دو با معادله رگرسیون y=0.000004x (r2=0.999) بهدست آمد. مقدار هیستامین تولید شده توسط سه سوش باکتری و اندازه گیری شده با دو روش مذکور تفاوت آماری معنی داری نداشت و ضریب همبستگی بین یافته های بهدست آمده از دو روش 99/0 بود. با توجه به یافته های مشابه دو روش، روش CZE بهدلیل عدم نیاز به آمادهسازی نمونه، سادگی، حساسیت و کمهزینه بودن، بهعنوان روشی مناسب برای اندازه گیری مقدار هیستامین در محیط های کشت میکروبی پیشنهاد می گردد.
المصادر:
· Bolygo, E., Cooper, P.A., Jessop, K.M. and Moffatt, F. (2000). Determination of histamine in tomatoes by capillary electrophoresis. Journal of AOAC International, 83: 89–94.
· Bover-Cid, S., Izquierdo-Pulido, M. and Vidal-Carou, M.C. (2001). Effect of interaction between a low tyramine-producing Lactobacillus and proteolytic staphylococci on biogenic amine production during ripening and storage of dry sausage. International Journal of Food Microbiology, 65: 113–123.
· Brink, B., Damirik, C., Joosten, H.M.L.J. and Huis in’t Veld, J.H.J. (1990). Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology, 11: 73–84.
· Cinquina, A.L., Longo, F., Cali, A., De Santis, L., Baccelliere, R. and Cozzani, R. (2004). Validation and comparison of analytical methods for the determination of histamine in tuna fish samples. Journal of Chromatography A, 1032: 79–85.
· Er, B., Demirhan, B., Bas, S.Y., Yentur, G. and Oktem, A.B. (2014).
Determination of histamine level in canned tuna fish. Bulgarian Journal of Agricultural Science, 20 (4): 834–838.
· Gardini, F., Martuscelli, M., Crudele, M.A., Paparella, A. and Suzzi, G. (2002). Use of Staphylococcus xylosus as a starter culture in dried sausage: effect on the biogenic amine content. Meat Science, 61: 275–283.
· Halász, A., Bara´th, A., Simon-Sarkadi, L. and Holzapfel, W.H. (1994). Biogenic amines and their production by microorganisms in foods. Trends in Food Science and Technology, 5: 42–49.
· Hernandez-Herrero M.M., Roig-Sague ́s A.X., Rodr ́ıguez-Jerez J.J. and Mora-Ventura M.T. (1999) Halotolerant and halophilic histamine-forming bacteria isolated during the ripening of salted anchovies (Engraulis encrasicholus). Journal of Food Protection, 62: 509–514.
· Irlinger F. (2008). Safety assessment of dairy microorganisms: Coagulase-negative staphylococci. International Journal of Food Microbiology, 126: 302–310.
· Konings, W.N., Lolkema, J.S., Bolhuis, H., Van Veen, H.W., Poolman B. and Driessen, A.J.M. (1997). The role of transport processes in survival of lactic acid bacteria. Antonie van Leeuvenhoek, 71: 117–128.
· Kvasnicka, F. and Voldrich, M. (2006). Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. Journal of Chromatography A, 1103: 145–149.
· Landeta G., De las Rivas B., Carrascosa A.V. and Munoz R. (2007) Screening of biogenic amine production by coagulase-negative staphylococci isolated during industrial Spanish dry-cured ham processes. Meat Science, 77: 556–561.
· Lange, J., Thomas, K. and Wittmann, C. (2002). Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. Journal of Chromatography B: Analytical Technology Biomedical Life Science, 779: 229–239.
· Lee, Y.C., Lin, C.S., Liu, F.L., Huang, T.C. and Tsai, Y.H. (2015). Degradation of histamine by Bacillus polymyxa isolated from salted fish products. Journal of Food and Drug Analysis, 15: 1–9.
· Lu, S., Xu, X., Zhou, G., Zhu, Z., Meng, Y. and Sun, Y. (2010). Effect of starter cultures on microbial ecosystem and biogenic amines in fermented sausage. Food Control, 21: 444–449.
· Mah, J.H. and Hwang, H.J. (2009). Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control, 20: 796–801.
· Mah, J.H., Ahn, J.B., Park, J.H., Sung, H.C. and Hwang, H.J. (2003). Characterization of biogenic amine-producing microorganisms isolated from Myeolchi-Jeot, Korean slated and fermented anchovy. Journal of Microbiology and Biotechnology, 13: 362–699.
· Numanoğlu, E., Boyaci, I.H. and Topcu, A. (2008). Simple determination of histamine in cheese by capillary electrophoresis with diode array detection. Journal of Food and Drug Analysis, 16 (6): 74–80.
· Sanceda, N.G., Ohashi, S.E. and Kurata, M.T. (1999). Histamine behavior during the fermentation process in the manufacture of fish sauce. Journal of Agricultural and Food Chemistry, 47: 3596–3600.
· Simion, A.M.C., Vizireanu, C., Alexe, P., Franco, I. and Carballo, J. (2014). Effect of the use of selected starter cultures on some quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety. Food Control, 35: 123–131.
· Simonova, M., Strompfova, V., Marcinakova, M., Laukova, A., Vesterlund, S., Moratalla, M.L., et al. (2006). Characterization of Staphylococcus carnosus isolated from Slovak meat products. Meat Science, 73: 559–564.
· Tsai Y.H., Chang S.C. and Kung H.F. (2007) Histamine contents and histamine-forming bacteria in natto products in Taiwan. Food Control, 18: 1026–1030.
· Vitali, L., Valese, A.C., Azevedo, M.S., Gonzaga, L.V., Costa, A.C.O., Piovezan, M., et al. (2013). Development of a fast and selective separation method to determine histamine in tuna fish samples using capillary zone electrophoresis. Talanta, 106: 181–185.
· Yokoi K., Harada Y., Shozen K.I., Satomi M., Taketo A. and Kodaira K.I. (2011) Characterization of the histidine decarboxylase gene of Staphylococcus epidermidis TYH1 coded on the staphylococcal cassette chromosome. Gene, 477: 32–41.
_||_
· Bolygo, E., Cooper, P.A., Jessop, K.M. and Moffatt, F. (2000). Determination of histamine in tomatoes by capillary electrophoresis. Journal of AOAC International, 83: 89–94.
· Bover-Cid, S., Izquierdo-Pulido, M. and Vidal-Carou, M.C. (2001). Effect of interaction between a low tyramine-producing Lactobacillus and proteolytic staphylococci on biogenic amine production during ripening and storage of dry sausage. International Journal of Food Microbiology, 65: 113–123.
· Brink, B., Damirik, C., Joosten, H.M.L.J. and Huis in’t Veld, J.H.J. (1990). Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology, 11: 73–84.
· Cinquina, A.L., Longo, F., Cali, A., De Santis, L., Baccelliere, R. and Cozzani, R. (2004). Validation and comparison of analytical methods for the determination of histamine in tuna fish samples. Journal of Chromatography A, 1032: 79–85.
· Er, B., Demirhan, B., Bas, S.Y., Yentur, G. and Oktem, A.B. (2014).
Determination of histamine level in canned tuna fish. Bulgarian Journal of Agricultural Science, 20 (4): 834–838.
· Gardini, F., Martuscelli, M., Crudele, M.A., Paparella, A. and Suzzi, G. (2002). Use of Staphylococcus xylosus as a starter culture in dried sausage: effect on the biogenic amine content. Meat Science, 61: 275–283.
· Halász, A., Bara´th, A., Simon-Sarkadi, L. and Holzapfel, W.H. (1994). Biogenic amines and their production by microorganisms in foods. Trends in Food Science and Technology, 5: 42–49.
· Hernandez-Herrero M.M., Roig-Sague ́s A.X., Rodr ́ıguez-Jerez J.J. and Mora-Ventura M.T. (1999) Halotolerant and halophilic histamine-forming bacteria isolated during the ripening of salted anchovies (Engraulis encrasicholus). Journal of Food Protection, 62: 509–514.
· Irlinger F. (2008). Safety assessment of dairy microorganisms: Coagulase-negative staphylococci. International Journal of Food Microbiology, 126: 302–310.
· Konings, W.N., Lolkema, J.S., Bolhuis, H., Van Veen, H.W., Poolman B. and Driessen, A.J.M. (1997). The role of transport processes in survival of lactic acid bacteria. Antonie van Leeuvenhoek, 71: 117–128.
· Kvasnicka, F. and Voldrich, M. (2006). Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. Journal of Chromatography A, 1103: 145–149.
· Landeta G., De las Rivas B., Carrascosa A.V. and Munoz R. (2007) Screening of biogenic amine production by coagulase-negative staphylococci isolated during industrial Spanish dry-cured ham processes. Meat Science, 77: 556–561.
· Lange, J., Thomas, K. and Wittmann, C. (2002). Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. Journal of Chromatography B: Analytical Technology Biomedical Life Science, 779: 229–239.
· Lee, Y.C., Lin, C.S., Liu, F.L., Huang, T.C. and Tsai, Y.H. (2015). Degradation of histamine by Bacillus polymyxa isolated from salted fish products. Journal of Food and Drug Analysis, 15: 1–9.
· Lu, S., Xu, X., Zhou, G., Zhu, Z., Meng, Y. and Sun, Y. (2010). Effect of starter cultures on microbial ecosystem and biogenic amines in fermented sausage. Food Control, 21: 444–449.
· Mah, J.H. and Hwang, H.J. (2009). Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control, 20: 796–801.
· Mah, J.H., Ahn, J.B., Park, J.H., Sung, H.C. and Hwang, H.J. (2003). Characterization of biogenic amine-producing microorganisms isolated from Myeolchi-Jeot, Korean slated and fermented anchovy. Journal of Microbiology and Biotechnology, 13: 362–699.
· Numanoğlu, E., Boyaci, I.H. and Topcu, A. (2008). Simple determination of histamine in cheese by capillary electrophoresis with diode array detection. Journal of Food and Drug Analysis, 16 (6): 74–80.
· Sanceda, N.G., Ohashi, S.E. and Kurata, M.T. (1999). Histamine behavior during the fermentation process in the manufacture of fish sauce. Journal of Agricultural and Food Chemistry, 47: 3596–3600.
· Simion, A.M.C., Vizireanu, C., Alexe, P., Franco, I. and Carballo, J. (2014). Effect of the use of selected starter cultures on some quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety. Food Control, 35: 123–131.
· Simonova, M., Strompfova, V., Marcinakova, M., Laukova, A., Vesterlund, S., Moratalla, M.L., et al. (2006). Characterization of Staphylococcus carnosus isolated from Slovak meat products. Meat Science, 73: 559–564.
· Tsai Y.H., Chang S.C. and Kung H.F. (2007) Histamine contents and histamine-forming bacteria in natto products in Taiwan. Food Control, 18: 1026–1030.
· Vitali, L., Valese, A.C., Azevedo, M.S., Gonzaga, L.V., Costa, A.C.O., Piovezan, M., et al. (2013). Development of a fast and selective separation method to determine histamine in tuna fish samples using capillary zone electrophoresis. Talanta, 106: 181–185.
· Yokoi K., Harada Y., Shozen K.I., Satomi M., Taketo A. and Kodaira K.I. (2011) Characterization of the histidine decarboxylase gene of Staphylococcus epidermidis TYH1 coded on the staphylococcal cassette chromosome. Gene, 477: 32–41.