اثر استفاده از فیلم های سدیم کازئینات حاوی باکتری های لاکتوباسیلوس اسیدوفیلوس و لاکتوباسیلوس کازئی بر کنترل باکتری لیستریا منوسایتوژنز تلقیح شده در فیله ماهی فیتوفاگ
الموضوعات :سید مهدی اجاق 1 , بهاره شعبانپور 2 , معظمه کردجزی 3 , اسماعیل عبداله زاده 4 , مریم قره ئی 5
1 - دانشیار گروه فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 - استاد گروه فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - استادیار گروه فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 - دانشجوی دکتری فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
5 - کارشناسی ارشد فرآوری محصولات شیلاتی، دانشکده شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
الکلمات المفتاحية: باکتری های اسید لاکتیک, فیلم خوراکی, لیستریا منوسایتوژنز,
ملخص المقالة :
مقدمه: فیلم های خوراکی با پایه کازئین به دلیل کیفیت بالای تغذیه ای پتانسیل مناسب جهت محافظت از فرآورده های غذایی را دارند. هدف از این تحقیق، تهیه فیلم سدیم کازئینات حاوی باکتری های لاکتوباسیلوس اسیدوفیلوس و لاکتوباسیلوس کازئی و سنجش فعالیت بازدارندگی علیه لیستریا مونوسیتوژنز تلقیح شده به فیله ماهی فیتوفاگ می باشد. مواد و روش ها: باکتری های لاکتوباسیلوس اسیدوفیلوس و لاکتوباسیلوس کازئی درحالت محلول به فیلم سدیم کازئینات قبل از قالب گیری افزوده شدند و در انکوباتور 40 درجه سانتی گراد به مدت 24 ساعت خشک گردید. اثر فیلم حاوی باکتری ها در کنترل لیستریا مونوسیتوژنز و میزان pH ماهی پوشش داده شده با فیلم حاوی باکتری ها، طی 9 روز در فواصل زمانی96 ساعت و زنده مانی باکتری ها طی مدت 12 روز در محیط کشت و فیله ماهی در فواصل زمانی 96 ساعت بررسی شدند. همچنین اثر باکتری های تلقیح شده بر خصوصیات فیزیکی و مکانیکی فیلم نیز مورد بررسی قرار گرفت. یافته ها: زنده مانی باکتری های اسید لاکتیک در فیله طی زمان نگهداری افزایش یافت. هر دو باکتری سبب کاهش تعداد باکتری لیستریا نسبت به نمونه شاهد گردیدند. باکتری های اسید لاکتیک بر درصد حلالیت، رطوبت، شاخص L و اختلاف رنگی تاثیر معنی داری داشته، اما بر مقاومت کششی و درصد افزایش طول در لحظه پاره شدن، تاثیر معنی داری ایجاد نکردند. نتیجه گیری: با توجه به فعالیت ضد میکروبی باکتری های مذکور، نتایج آزمون نشان می دهد که تلقیح باکتری های LAB به فیلم می تواند به عنوان یک ابزار مفید جهت کنترل پاتوژن های غذایی مطرح باشد.
Almasi, H., Ghanbarzadeh, B. & Entezami, A. A. (2010). Physicochemical properties of
starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46, 1-5.
Arrieta, M. P., Peltzer, M. A., Garrigós, M. D. C. & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114, 486–494.
ASTM. (2002). Standard test method for tensile properties of thin plastic sheeting. Annual book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
Berjeaud, J. M. (2007). Characterization of new bacteriocinogenic lactic acid bacteria isolated using a medium designed to simulate inhibition of Listeria by Lactobacillus sakei 2512 on meat. International Journal of Food Microbiology, 113, 67-74.
Bondi, M., Anacarso, I., Iseppi, R., Sabia, C., Messi, P., Niederhäusern, S. D. & Guerrieri, E. (2009). Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenesin a small-scale model. Food Control, 20, 861–865.
Bourtoom, T. & Chinnan, M. S. (2008). Preparation and properties of rice starch-chitosan blend biodegradable film. LWT-Food Science and Technology, 41, 1633-1641.
Chen, H., Neetoo, H. & Juck, G. (2010). Application of an active alginate coating to control the growth of Listeria monocytogenes on poached and deli turkey products. International Journal of Food Microbiology, 142, 302-308.
Chiralt, A., Iván Quintero Saavedra, J. & Sánchez-González, L. (2013). Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocolloids, 33, 92-98.
Cizeikiene, D., Juodeikiene, G., Paskevicius, A. & Bartkiene, E. (2013). Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control, 31, 539-545.
Concha-Meyer, A., Schöbitz, R., Brito, C. & Fuentes, R. (2011). Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control, 22, 485-489.
Crandall, P. G., Ricke, S. C., O'Bryan, C. A., Eggleton, M. & Koo, O. K. (2012). Antimicrobial activity of lactic acid bacteria
against Listeria monocytogenes on frankfurters formulated with and without lactate/diacetate. Meat Science, 92: 533–537.
Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y & Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115, 66-70.
Fazlara, A., Sadeghi, A. & Rostami Soleimani, P. (2012). Study of antimicrobial effect of cumin oil on the Listeria monocytogenes bacteria in Iranian white cheese. Journal of Food Science, 35, 35-44.
Ghanbari, M., Rezaei, M., Soltani, M. & Shahhosseini, Gh. (2011). Effect of Lactobacillus casei inoculationa, as a biological preservatives on chemical and biological quality of smoked Rutilus frisiikutum product. Journal of Food Science, 33, 27-34.
Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G. & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Research International, 43, 2402-2408.
Gómez-Estaca, J., López de Lacey, A., López-Caballero, M., Gómez-Guillén, M. & Montero, P. (2010). Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food microbiology, 27, 889-896.
Gram, L. & Dalgaard, P. (2002). Fish spoilage bacteria- problems and solutions. Current Opinion in Biotechnology, 13, 262-266.
Hosseini, M. H., Razavi, S. H. & Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33, 727-743.
Kanmani, P. & Taik Lim, S. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chemistry, 141, 1041-1049.
López de Lacey, A., López Caballero, M. E., Gómez Estaca, J., Gómez Guillén, M. C. & Montero García, P. (2012). Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innovative Food Science and Emerging Technologies, 16, 277-282.
Manju, S., Leema, J., Srinivasa Gopal, T. K., Ravishankar, C. N. & Jose, L. (2007). Effects of sodium acetate dip treatment and vacuum-packaging on chemical, microbiological, textural and sensory changes of Pearlspot (Etroplus suratensis) during chill storage. Food Chem, 102, 27- 32.
Ojagh, S. M., Rezaei, M., Razavi, S. H. & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122, 161-166.
Pacheco-Aguilar, R., Lugo-Sanchez, M. E. & Robles-Burgueno, M. R. (2000). Postmortem biochemical and functional characteristic of Monterey sardine muscle stored at 0 °C. Journal of Food Science, 65, 40–47.
Rezvani, E., Schleining, G., Sümen, G. & Taherian, A. R. (2013). Assessment of physical and mechanical properties of sodium caseinate and stearic acid based film-forming emulsions and edible films. Journal of Food Engineering, 116, 598–605.
Rollán, G., Fontde Valdez, G., Torres, M. J. & Gerez, C. L. (2013). Control of spoilage fungi by lactic acid bacteria. Biological Control, 64, 231-237.
Siripatrawan, U. & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24, 770-775.
Tsakalidou, E. (2009). Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. International Journal of Food Microbiology, 130, 219-226.