Characterization, quantification and antioxidant potential of phenolic compounds in Brachychiton rupestris (T.Mitch. ex Lindl.) K. Schum. leaves
Subject Areas : Phytochemistry: Isolation, Purification, Characterization
Heba Raafat Mohamed
1
*
,
Eman Ahmed El-Wakil
2
,
Maher Mahmoud El-Hashash
3
,
El-Sayed Saleh Abdel-Hameed
4
1 - Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Korniash El-Nile, 12411Warrak El-Hadar, Giza, Egypt
2 - Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Korniash El-Nile, 12411Warrak El-Hadar, Giza, Egypt
3 - Department of Chemistry, Faculty of Science, Ain-Shams University, El-Khalifa El-Mamoun, 11566 Abasia, Cairo, Egypt *Corresponding Author: Heba Raafat Mohamed
4 - Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Korniash El-Nile, 12411Warrak El-Hadar, Giza, Egypt
Keywords: Antioxidant, Brachychiton rupestris (T.Mitch. ex Lindl.) K. Schum., Caffeic acid, HPLC-DAD, Malvaceae, Methyl gallate, Nicotiflorin,
Abstract :
The studies conducted to investigate the pharmacological potential or the chemical composition of Brachychiton rupestris leaves were very limited. The present study aims to isolate, identify and quantify the major phenolics in B. rupestris leaves and to evaluate their antioxidant potential. Methanol (85.0%) extract of B. rupestris leaves was prepared and successively partitioned with petroleum ether, dichloromethane, ethyl acetate and n-butanol, respectively. The bioactive compounds in the ethyl acetate and n-butanol fractions were separated chromatographically, and their structures were characterized. Their concentrations were determined using HPLC-DAD, and their antioxidant potential was evaluated against DPPH•. Caffeic acid, p-coumaric acid, nicotiflorin, methyl gallate, isoquercetin, rutin, quercetin and kaempferol were the major phytochemicals. Methyl gallate exhibited the most potent antioxidant activity with an IC50 of 18.19 ± 0.161 µg/mL. B. rupestris could be considered a promising source of antioxidants which suggests its application in nutraceuticals and therapeutic formulations.
Abou Zeid, A.H., Farag, M.A., Hamed, M.A.A., Kandil, Z.A.A., El-Akad, R.H., El-Rafie, H.M., 2017. Flavonoid chemical composition and antidiabetic potential of Brachychiton acerifolius leaves extract. Asian Pac. J. Trop. Biomed. 7(5), 389-396.
DOI: https://doi.org/10.1016/j.apjtb.2017.01.009.
Aisyah, L.S., Yun, Y.F., Herlina, T., Julaeha, E., Zainuddin, A., Nurfarida, I., Hidayat, A.T., Supratman, U., Shiono, Y., 2017. Flavonoid compounds from the leaves of Kalanchoe prolifera and their cytotoxic activity against P-388 murine leukimia cells. Nat. Prod. Sci. 23(2), 139-145.
DOI: http://dx.doi.org/10.20307/nps.2017.23.2.139.
Atta, E.M., Mohamed, N.H., Abdelgawad, A.A.M., 2017. Antioxidants: An overview on the natural and synthetic types. Eur. Chem. Bull. 6(8), 365-375.
DOI: https://doi.org/10.17628/ecb.2017.6.365-375.
Anish, R.J., Rumaisa, F., Aswathy, T.R., Kalpana, V.N.S., Rauf, A.A., 2023. Molecular docking, anti-inflammatory, antimicrobial and antioxidant evaluation of Pterospermum rubiginosum B. Heyne. Trends Phytochem. Res. 7(2), 95-109.
DOI: https://doi.org/10.30495/tpr.2023.1977515.1316.
Cardoso, C.L., Silva, D.H.S., Castro-Gamboa, I., Bolzani, V.D.S., 2005. New biflavonoid and other flavonoids from the leaves of Chimarrhis turbinata and their antioxidant activities. J. Braz. Chem. Soc. 16(6 B), 1353-1359.
DOI: http://dx.doi.org/10.1590/S0103-50532005000800008.
De Oliveira, D.M., Siqueira, E.P., Nunes, Y.R.F., Cota, B.B., 2013. Flavonoids from leaves of Mauritia flexuosa. Rev. Bras. Farmacogn. 23(4), 614-620.
DOI: http://dx.doi.org/10.1590/S0102-695X2013005000061.
Dehaghani, Z.A., Asghari, G., Dinani, M.S., 2017. Isolation and Identification of nicotiflorin and narcissin from the aerial parts of Peucedanum aucheri Boiss. J. Agric. Sci. Technol A. 7, 45-51.
DOI: http://dx.doi.org/10.17265/2161-6256/2017.01.007.
El-Sherei, M.M., Ragheb, A.Y., Kassem, M.E., Marzouk, M.M., Mosharrafa, S.A., Saleh, N.A., 2016. Phytochemistry, biological activities and economical uses of the genus Sterculia and the related genera: A reveiw. Asian. Pac. J. Trop. Dis. 6(6), 492-501.
DOI: http://dx.doi.org/10.1016/S2222-1808(16)61075-7.
Espíndola, K.M.M., Ferreira, R.G., Narvaez, L.E.M., Rosario, A.C.R.S., Da Silva, A.H.M., Silva, A.G.B., Vieira, A.P.O., Monteiro, M.C., 2019. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 9, 541.
DOI: http://dx.doi.org/10.3389/fonc.2019.00541.
Farag, M.A., Abou Zeid, A.H., Hamed, M.A., Kandeel, Z., El-Rafie, H.M., El-Akad, R.H., 2014. Metabolomic fingerprint classification of Brachychiton acerifolius organs via UPLC-qTOF-PDA-MS analysis and chemometrics. Nat. Prod. Res. 29(2), 116-124.
DOI: https://doi.org/10.1080/14786419.2014.964710.
Ganbaatar, C., Gruner, M., Mishig, D., Duger, R., Schmidt, A.W., Knölker, H-J., 2015. Flavonoid glycosides from the aerial parts of Polygonatum odoratum (Mill.) Druce growing in Mongolia. Open Nat. Prod. J. 8(1), 1-7.
DOI: http://dx.doi.org/10.2174/1874848101508010001.
Ganeshpurkar, A., Saluja, A.K., 2017. The pharmacological potential of rutin. Saudi Pharm. J. 25(2), 149-164. DOI: http://dx.doi.org/10.1016/j.jsps.2016.04.025.
Gurivelli, P., Katta, S., 2023. Unlocking the anthelmintic potential of Grewia bilamellata Gagnep: In-vitro and molecular docking studies on adult Indian earthworms. Trends Phytochem. Res. 7(2), 127-140.
DOI: https://doi.org/10.30495/tpr.2023.1983640.1332.
Huang, C.Y., Chang, Y.J., Wei, P.L., Hung, C.S., Wang, W., 2021. Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells. PLoS ONE 16(3), e0248521.
DOI: http://dx.doi.org/10.1371/journal.pone.0248521.
Iwashina, T., Tamura, M.N., Murai, Y., Kitajima, J., 2013. New flavonol glycosides from the leaves of Triantha japonica and Tofieldia nuda. Nat. Prod. Commun. 8(9), 1251-1254.
DOI: http://dx.doi.org/10.1177/1934578x1300800917.
Jeong, C.H., Jeong, H.R., Choi, G.N., Kim, D.O., Lee, U., Heo, H.J., 2011. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf. Chin. Med. 6(25), 1-9.
DOI: http://dx.doi.org/10.1186/1749-8546-6-25.
Liu, H., Mou, Y., Zhao, J., Wang, J., Zhou, L., Wang, M., Wang, D., Han, J., Yu, Z., Yang, F., 2010. Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities. Molecules 15(11), 7933-7945.
DOI: http://dx.doi.org/10.3390/molecules15117933.
Lubis, M.Y., Siburian, R., Marpaung, L., Simanjuntak, P., Nasution, M.P., 2018. Methyl gallate from Jiringa (Archidendron jiringa) and antioxidant activity. Asian J. Pharm. Clin. Res. 11(1), 346-350.
DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i1.21637.
Magar, R.T., Sohng, J.K., 2020. A review on structure, modifications and structure-activity relation of quercetin and its derivatives. J. Microbiol. Biotechnol. 30(1), 11-20.
DOI: http://dx.doi.org/10.4014/jmb.1907.07003.
Manivannan, R., Shopna, R., 2015. Isolation of quercetin and isorhamnetin derivatives and evaluation of anti-microbial and anti-inflammatory activities of Persicaria glabra. Nat. Prod. Sci. 21(3), 170-175.
Mohamed, H.R., Abdel-Hameed, E.S., El-Wakil, E.A., El-Hashash, M.M., Shemis, M., 2021. Phytochemical screening, in-vitro antioxidant and cytotoxic potentials of Brachychiton rupestris leaves. Res. J. Pharm. Technol. 14(6), 3119-3127.
DOI: https://doi.org/10.52711/0974-360X.2021.00544.
Mohamed, H.R., El-Wakil, E.A., El-Hashash, M.M., Abdel-Hameed, E.S.S., 2023. Chemical constituents of Ailanthus altissima (Mill.) swingle leaves growing in Egypt and their antioxidant activity. Acta Pharm. Sci. 61(3), 213-233.
DOI: https://doi.org/10.23893/1307-2080.APS6115.
Mohammadhosseini, M., Frezza, C., Venditti, A., & Sarker, S.D., 2021. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18(11), e2100317.
DOI: https://doi.org/10.1002/cbdv.202100317.
Mohammadhosseini, M., Jeszka-Skowron, M., 2023. A systematic review on the ethnobotany, essential oils, bioactive compounds, and biological activities of Tanacetum species. Trends Phytochem. Res. 7(1), 1-29.
DOI: https://doi.org/10.30495/tpr.2023.700612.
Olennikov, D.N., Chirikova, N.K., 2018. Rhamnetin glycosides from the genus Spiraea. Chem. Na.t Compd. 54(1), 41-45. DOI: http://dx.doi.org/10.1007/s10600-018-2255-9.
Orfali, G.C., Duarte, A.C., Bonadio, V., Martinez, N.P., de Araújo, M.E.M.B., Priviero, F.B.M., Carvalho, P.O., Priolli, D.G., 2016. Review of anticancer mechanisms of isoquercitin. World J. Clin. Oncol. 7(2), 189-199.
DOI: http://dx.doi.org/10.5306/wjco.v7.i2.189.
Pei, K., Ou, J., Huang, J., Ou, S., 2016. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 96(9), 2952-2962.
DOI: http://dx.doi.org/10.1002/jsfa.7578.
Phaniendra, A., Jestadi, D.B., Periyasamy, L., 2015. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30(1), 11-26.
DOI: https://doi.org/10.1007/s12291-014-0446-0.
Ragheb, A.Y., Kassem, M.E.S., El-Sherei, M.M., Marzouk, M.M., Mosharrafa, S.A., Saleh, N.A.M., 2019. Morphological, phytochemical and anti-hyperglycemic evaluation of Brachychiton populneus. Rev. Bras. Farmacogn. 29, 559-569.
DOI: https://doi.org/10.1016/j.bjp.2019.05.001.
Rjeibi, I., Ben Saad, A., Ncib, S., Souid, S., Allagui, M.S., Hfaiedh, N., 2020. Brachychiton populneus as a novel source of bioactive ingredients with therapeutic effects: antioxidant, enzyme inhibitory, anti-inflammatory properties and LC-ESI-MS profile. Inflammopharmacology 28(2), 563-574.
DOI: https://doi.org/10.1007/s10787-019-00672-8.
Thabet, A.A., Youssef, F.S., El-Shazly, M., El-Beshbishy, H.A., Singab, A.B., 2018b. Validation of the antihyperglycaemic and hepatoprotective activity of the flavonoid rich fraction of Brachychiton rupestris using in vivo experimental models and molecular modelling. Food Chem. Toxicol. 114, 302-310.
DOI: https://doi.org/10.1016/j.fct.2018.02.054.
Thabet, A.A., Youssef, F.S., El-Shazly, M., Singab, A.B., 2017. Anti-infective properties of Brachychiton rupestris and Brachychiton luridum Leaves and their qualitative phytochemical screening. Med. Aromat. Plants. 6(4), 1000299.
DOI: https://doi.org/10.4172/2167-0412.1000299.
Thabet, A.A., Youssef, F.S., Korinek, M., Chang, F., Wu, Y., Chen, B., El-Shazly, M., Singab, A., Hwang, T., 2018a. Study of the anti-allergic and anti-inflammatory activity of Brachychiton rupestris and Brachychiton discolor leaves (Malvaceae) using in vitro models. BMC Complement. Altern. Med. 18(1), 299.
DOI: https://doi.org/10.1186/s12906-018-2359-6.
Thagriki, D.S., Ray, U., 2022. An overview of traditional medicinal plants as dengue virus inhibitors. Trends Phytochem. Res. 6(2), 116-136.
DOI: https://doi.org/10.30495/tpr.2022.1956618.1254.
Valentová, K., Vrba, J., Bancířová, M., Ulrichová, J., Křen, V., 2014. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 68, 267-282.
DOI: https://doi.org/10.1016/j.fct.2014.03.018.
Wan, C., Yu, Y., Zhou, S., Tian, S., Cao, S., 2011. Isolation and identification of phenolic compounds from Gynura divaricata leaves. Pharmacogn. Mag. 7(26), 101-108.
DOI: http://dx.doi.org/10.4103/0973-1296.80666.
Wang, L., Li, C., Guan, C., Zhang, Y., Yang, C., Zhao, L., Luan, H., Zhou, B., Che, L., Wang, Y., Zhang, W., Zhang, H., Man, X., Jiang, W., Xu, Y., 2021. Nicotiflorin attenuates cell apoptosis in renal ischemia-reperfusion injury through activating transcription factor 3. Nephrology 26(4), 358-368.
DOI: http://dx.doi.org/10.1111/nep.13841.
Wang, Y., Wray, V., Tsevegsuren, N., Lin, W., Proksch, P., 2012. Phenolic compounds from the Mongolian medicinal plant Scorzonera radiata. Z. Naturforsch. C. J. Biosci. 67 C(3-4),135-143.
DOI: http://dx.doi.org/10.1515/znc-2012-3-405.
Yasir, M., Sultana, B., Amicucci, M., 2016. Biological activities of phenolic compounds extracted from Amaranthaceae plants and their LC/ESI-MS/MS profiling. J. Funct. Foods 26, 645-656.
DOI: http://dx.doi.org/10.1016/j.jff.2016.08.029.
Yu, S., Guo, Q., Jia, T., Zhang, X., Guo, D., Jia, Y., Li, J., Sun, J., 2021. Mechanism of action of nicotiflorin from Tricyrtis maculata in the treatment of acute myocardial Infarction: From network pharmacology to experimental pharmacology. Drug Des. Devel. Ther. 15, 2179-2191.
DOI: http://dx.doi.org/10.2147/DDDT.S302617.
Zhao, J., Zhang, S., You, S., Liu, T., Xu, F., Ji, T., Zhengyi, G., 2017. Hepatoprotective effects of nicotiflorin from Nymphaea candida against concanavalin A-induced and D-galactosamine-induced liver injury in mice. Int. J. Mol. Sci. 18(3), 587. DOI: http://dx.doi.org/10.3390/ijms18030587.