ارائه مدل ریاضی کنترل بودجه و هزینه متغیر فعالیتهای پروژه در شرایط موازنه زمان- هزینه با لحاظ نمودن جریمه تأخیر
محورهای موضوعی : حسابداری مدیریتمحمد زاده کفاش 1 , احمد ابراهیمی 2 *
1 - کارشناس ارشد مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - عضو هیات علمی و استادیار گروه مدیریت صنعتی و تکنولوژی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: بودجه متغیر, موازنه زمان - هزینه, عدم قطعیت هزینهها, روابط پیشنیازی تعمیمیافته,
چکیده مقاله :
در این تحقیق یک مدل برنامهریزی خطی عدد صحیح برای بررسی مسئله تأثیر بودجه غیرقطعی پروژه بر عملکرد آن ارائهگردیده است. گرچه درگذشته تحقیقات فراوانی در خصوص بهینهسازی مسائل موازنه زمان- هزینه (TCT) انجامشده است، اما در این مقاله از رویکرد حسابداری پروژه در شرایط عدم اطمینان دریافت بودجه تخصیصیافته، عدم قطعیت در هزینه فعالیتهای پروژه و مدتزمان آنها بهطور همزمان استفادهشده است. از نوآوریهای دیگر این تحقیق، ترکیب روابط پیشنیازی تعمیمیافته (GPRs) با مدهای اجرایی متنوع فعالیتها و سناریوهای پیوسته، گسسته و ترکیبی (پیوسته/ گسسته) است. از برنامهریزی قیود تصادفی (CCP) برای قطعی نمودن بودجه متغیر استفادهشده است. محدودیت بودجه تصادفی در یک سطح اطمینان از پیش تعیینشده است. برای تخمین زمانهای غیرقطعی، تکنیک (PERT) و برای تخمین هزینههای غیرقطعی مدهای اجرایی فعالیتها، از روش سهنقطهای بهره گرفتهشده است. مدل ریاضی که عبارت است از به حداقل رساندن زمان کل پروژه، با در نظر گرفتن پاداش زود کرد در اتمام پروژه و جریمه تأخیر دیرکرد، توسط نرمافزار (GAMS) حل و برای اثبات عملکرد مدل، بر روی یک پروژه واقعی پیادهسازی گردید. سناریوهای متفاوتی پیشنهادشده که اثر هر یک از آنها در تغییرات بودجه و عدم اطمینان زمانی بر هزینههای مستقیم، غیرمستقیم، هزینه کل و مدتزمان اتمام پروژه موردبررسی قرار می گیرد.
In this paper, an integer linear programming model is proposed to examine the effect of the project's uncertain budget on its performance. Although much research has been done in the past to optimize the time-cost trade off problem (TCT), in this paper, the project accounting approach has been used in the uncertain terms of receiving the allocated budget, the uncertainty associated with the cost of project activities and its duration. From the innovations of this research, the combination of generalized prerequisite relationships (GPRs) with the various modes of implementation of the activities and scenarios is continuous, discrete and combined (continuous / discrete). Chance constraint programming (CCP) has been used to terminate the variable budget. Stochastic budget limitations are at a predetermined level of confidence. Program evaluation review technique (PERT) has been used to estimate uncertain times, and to calculate the uncertain costs of the operating modes of activities; the triangulation method has been used. The mathematical model, which is to minimize the total time of the project, was solved by software (GAMS), taking into account the early remuneration at the completion of the project and the late delinquency, and was implemented on a real numeric sample to prove the function and validation of the model. Different scenarios have been proposed that the effect of each of them on budget changes and uncertainty over time on direct, indirect, total and project costs are reviewed.
* M. El-kholy, "Time–cost tradeoff analysis considering funding variability and time uncertainty," Alexandria Engineering Journal, vol. 52, pp. 113-121, 2013.
* J. E. Kelley Jr and M. R. Walker, "Critical-path planning and scheduling," in Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference, 1959, pp. 160-173.
* D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar, "Application of a technique for research and development program evaluation," Operations research, vol. 7, pp. 646-669, 1959.
* R. Kolisch and A. Sprecher, "PSPLIB-a project scheduling problem library: OR software-ORSEP operations research software exchange program," European journal of operational research, vol. 96, pp. 205-216, 1997.
* Azaron, C. Perkgoz, and M. Sakawa, "A genetic algorithm approach for the time-cost trade-off in PERT networks," Applied mathematics and computation, vol. 168, pp. 1317-1339, 2005.
* J. M. Nicholas and H. Steyn, Project management for engineering, business and technology: Taylor & Francis, 2017.
* M. Vanhoucke, "New computational results for the discrete time/cost trade-off problem with time-switch constraints," European Journal of Operational Research, vol. 165, pp. 359-374, 2005.
* H. R. Tareghian and S. H. Taheri, "On the discrete time, cost and quality trade-off problem," Applied mathematics and computation, vol. 181, pp. 1305-1312, 2006.
* S.-L. Fan and Y.-C. Lin, "Time-cost trade-off in repetitive projects with soft logic," in Computing in Civil Engineering (2007), ed, 2007, pp. 83-90.
* S. Prakash, P. Kumar, B. Prasad, and A. Gupta, "Pareto optimal solutions of a cost–time trade-off bulk transportation problem," European Journal of Operational Research, vol. 188, pp. 85-100, 2008.
* H. Ke, W. Ma, and Y. Ni, "Optimization models and a GA-based algorithm for stochastic time-cost trade-off problem," Applied Mathematics and Computation, vol. 215, pp. 308-313, 2009.
* E. Klerides and E. Hadjiconstantinou, "A decomposition-based stochastic programming approach for the project scheduling problem under time/cost trade-off settings and uncertain durations," Computers & Operations Research, vol. 37, pp. 2131-2140, 2010.
* S.-P. Chen and M.-J. Tsai, "Time–cost trade-off analysis of project networks in fuzzy environments," European Journal of Operational Research, vol. 212, pp. 386-397, 2011.
* U. Klanšek and M. Pšunder, "MINLP optimization model for the nonlinear discrete time–cost trade-off problem," Advances in Engineering Software, vol. 48, pp. 6-16, 2012.
* Ghamginzadeh and A. A. Najafi, "Solving Resource-constrained Discrete Time-cost Trade-off Problem by Memetic Algorithm," 2013.
* M. Tavana, A.-R. Abtahi, and K. Khalili-Damghani, "A new multi-objective multi-mode model for solving preemptive time–cost–quality trade-off project scheduling problems," Expert Systems with Applications, vol. 41, pp. 1830-1846, 2014.
* H. Ke and J. Ma, "Modeling project time–cost trade-off in fuzzy random environment," Applied Soft Computing, vol. 19, pp. 80-85, 2014.
* K. Khalili-Damghani, M. Tavana, A.-R. Abtahi, and F. J. Santos Arteaga, "Solving multi-mode time–cost–quality trade-off problems under generalized precedence relations," Optimization Methods and Software, vol. 30, pp. 965-1001, 2015.
* Ahadian, O. Veisy, and V. Azizi, "A Multi-objective Stochastic Programming Approach for Project Time, Cost and Quality Trade-off Problem (TCQTP)," Jordan Journal of Civil Engineering, vol. 10, 2016.
* Z. Su, J. Qi, and H. Wei, "Simplifying the nonlinear continuous time-cost tradeoff problem," Journal of Systems Science and Complexity, vol. 30, pp. 901-920, 2017.
* Hafezalkotob, "A fuzzy leader-follower game approach to interaction of project client and multiple contractors in time/cost trade-off problem," Journal of Project Management, vol. 3, pp. 105-120, 2018.
* M. Hajdu, "Effects of the application of activity calendars on the distribution of project duration in PERT networks," Automation in Construction, vol. 35, pp. 397-404, 2013.
* I.-T. Yang, "Chance-constrained time–cost tradeoff analysis considering funding variability," Journal of construction engineering and management, vol. 131, pp. 1002-1012, 2005.
* G. K. Yang, "Fuzzy multi-objective programming application for time-cost trade-off of CPM in project management," in International Conference on Computational Collective Intelligence, 2010, pp. 215-229.
* J. Son, T. Hong, and S. Lee, "A mixed (continuous+ discrete) time-cost trade-off model considering four different relationships with lag time," KSCE Journal of Civil Engineering, vol. 17, pp. 281-291, 2013.
_||_