Quasi-nonexpansive mappings with respect to orbits in Banach spaces and weak fixed point property
Subject Areas : Functional analysisK. Fallahi 1 * , H. Ardakani 2 , F. Norouzi 3
1 - Javanroud Faculty of Management and Accounting, Razi University, Kermanshah, Iran
2 - Department of Mathematics, Payame Noor University, P.O. BOX 19395-3697, Tehran, Iran
3 - Department of Mathematics, Payame Noor University, P.O. BOX 19395-3697, Tehran, Iran
Keywords: Fixed point property, normal structure, nonexpansive mappings,
Abstract :
In the present work, we introduce quasi-nonexpansive mappings with respect to orbits on the Banach space. Then we show that a Banach space $\mathcal{A}$ has weak normal structure if and only if $\mathcal{A}$ has the weak fixed point property for quasi-nonexpansive mappings with respect to orbits.
[1] A. Amini-Harandi, M. Fakhar, H. R. Hajisharifi, Weak fixed point property for nonexpansive mappings with respect to orbits in Banach spaces, J. Fixed Point Theory. Appl. 18 (2016), 601-607.
[2] J. M. Ayerbe Toledano, T. Domınguez Benavides, G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel. 1997.
[3] T. Domınguez Benavides, The failure of the fixed point property for unbounded sets in c0, Proc. Amer. Math. Soc. 140 (2012), 645-650.
[4] P. N. Dowling, C.J. Lennard, B. Turett, Weak compactness is equivalent to the fixed point property in c_0, Proc. Amer. Math. Soc. 132 (2004), 1659-1666.
[5] L. A. Karlovitz, Existence of fixed points of nonexpansive mappings in a space without normal structure, Pacific J. Math. 66 (1976), 153158.
[6] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Month. 72 (1965), 10041006.
[7] C. Lennard, V. Nezir, Reflexivity is equivalent to the perturbed fixed point property for cascading nonexpansive maps in Banach lattices, Nonlinear Anal. 95 (2014), 414-420.
[8] E. Llorens-Fuster, B. Sims, The fixed point property in c0, Canad. Math. Bull. 41 (1998), 413-422.
[9] A. Nicolae, Generalized asymptotic pointwise contractions and nonexpansive mappings involving orbits, Fixed Point Theory Appl. (2010), 2010: 458265.
[10] W. O. Ray, The fixed point property and unbounded sets in Hilbert space, Trans. Amer. Math. Soc. 258 (1980), 531-537.
[11] S. Reich, The almost fixed point property for nonexpansive mappings, Proc. Amer. Math. Soc. 88 (1983), 44-46.