Basis extension and construction of tight frames
Subject Areas : Functional analysis
1 - Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India
Keywords: frames, tight frames, basis extension,
Abstract :
The notion of compression has received enormous attention in recent years because of its necessity in terms of the computational cost and other applicable features. But many times the notion expansion appears to be quite useful. Tight frames are quite useful in signal reconstruction, signal and image de-noising, compressed sensing because of the availability of a simple, explicit reconstruction formula. So in this paper, we discuss the extension of a basis by including some very sparse (at most two nonzero components) vectors so that the new frame becomes a tight frame. We do the basis extension in finite dimensional Hilbert spaces (both real and complex) to construct tight frames. We formulate constructive algorithms to do the aforementioned task. The algorithms guarantee us to produce tight frames with very less computational cost, and the new tight frames compensate for multiple erasures. The algorithms also do not disturb the vectors in the given basis. We also present one application of the aforementioned concept.
[1] B. G. Bodmann, H. J. Elwood, Complex equiangular parseval frames and Seidel matrices containing pth roots of unity, Proc. Amer. Math. Soc. 138 (12) (2010), 4387-4404.
[2] B. G. Bodmann, V. I. Paulsen, M. Tomforde, Equiangular tight frames from complex Seidel matrices containing cube roots of unity, Linear Algebra Appl. 430 (1) (2009), 396-417.
[3] H. Bolcskei, F. Hlawatsch, H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal. Process. 46 (12) (1998), 3256-3268.
[4] J. Cahill, M. Fickus, D. G. Mixon, M. J. Pottet, N. K. Strawn, Constructing finite frames of a given spectrum and set of lengths, Appl. Comput. Harmon. Anal. 35 (1) (2013), 52-73.
[5] E. J. Candes, D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C2singularities, Commun. Pure Appl. Math. 57 (2) (2004), 219-266.
[6] P. G. Casazza, M. Fickus, J. Kovacevic, M. T. Leon, J. C. Tremain, A Physical Interpretation of Tight Frames, Harmonic Analysis and Applications, 2006.
[7] P. G.Casazza, M. T. Leon, Existence and construction of finite frames with a given frame operator, Inter. J. Pure. Appl. Math. 63 (2) (2010), 149-157.
[8] O. Christensen, S. Datta, R. Y. Kim, Equiangular frames and generalizations of the Welch bound to dual pairs of frames, Linear. Multil. Algebra. 68 (12) (2020), 2495-2505.
[9] N. Cotfas, J. P. Gazeau, Finite tight frames and some applications, J. Physics A. Math. Theor. 43 (2010), 19:193001.
[10] S. Datta, J. Oldroyd, Construction of k-angle tight frames, Numer. Funct. Anal. Optim. 37(8) (2016), 975-989.
[11] S. Datta, J. Oldroyd, Low coherence unit norm tight frames, Linear. Multi. Algebra. 67 (6) (2019), 1174-1189.
[12] I. Daubechies, A. Grossmann, Y. Meyer, Painless non orthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
[13] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
[14] M. Egan, Properties of tight frames that are regular schemes, Crypt. Communi. 12 (3) (2020), 499-510.
[15] Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl. 9 (1) (2003), 77-96.
[16] Y. C. Eldar, T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Walvelets Multi. Inf. Process. 3 (3) (2005), 347-359.
[17] D. J. Feng, L. Wang and Y. Wang, Generation of finite tight frames by Householder transformations, Adv. Comput. Math. 24 (1) (2006), 297-309.
[18] P. J. S. G. Ferreira, Mathematics for Multimedia Signal Processing II Discrete Finite Frames and Signal Reconstruction, Signals Processing for Multimedia, 1999.
[19] M. Fickus, D. G. Mixon and J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl. 436 (5) (2012), 1014-1027.
[20] F. Gobel, G. Blanchard, U. Luxburg, Construction of Tight Frames on Graphs and Application to Denoising, Handbook of Big Data Analytics, Springer, 2018.
[21] V. K. Goyal, J. Kovasevic, J. A. Kelner, Quantized frame expansions with erasures, J. Appl. Comput. Harmon. Anal. 10 (3) (2001), 203-233.
[22] R. Holmes, V. Paulsen, Optimal frames for erasures, Linear Algebra Appl. 377 (2004), 31-51.
[23] T. Strohmer, R. Jr. Heath, Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal. 14 (2003), 257-275.
[24] S. Waldron, Generalized Welch bound equality sequences are tight frames, IEEE Trans. Inform. Theory. 49 (9) (2003), 2307-2309.