Equivalent characterization of right (left) centralizers or centralizers on Banach algebras
Subject Areas : Functional analysisH. Ghahramani 1 , Gh. Moradkhani 2 , S. Sattari 3 *
1 - Department of Mathematics, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
2 - Department of Mathematics, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
3 - Department of Mathematics, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
Keywords: Left centralizer, right centralizer, centralizer, Banach algebra, Banach $ \star $-algebra,
Abstract :
Let $ \mathcal{A} $ be a unital Banach algebra, $ w\in \mathcal{A}$, and $ \gamma : \mathcal{A} \to \mathcal{A} $ is a continuous linear map. We show that $\gamma$ satisfies $a\gamma(b)=\gamma(w)$ ($\gamma(a)b=\gamma(w)$) whenever $a,b\in \mathcal{A}$ with $ab=w$ and $w$ is a left (right) separating point in $\mathcal{A}$ if and only if $\gamma$ is a right (left) centralizer. Also, we prove that $\gamma$ satisfies $a\gamma(b)=\gamma(a)b=\gamma(w)$ whenever $a,b\in \mathcal{A}$ with $ab=w$ and $w$ is a left or right separating point in $\mathcal{A}$ if and only if $\gamma$ is a centralizer. We also provide some applications of the obtained results for characterization of a continuous linear map $\gamma:\mathcal{A}\rightarrow \mathcal{A}$ on a unital Banach $*$-algebra $\mathcal{A}$ satisfying $a\gamma(b)^{*}=\gamma(w^{*})^{*}$ ($\gamma(a)^{*}b=\gamma(w^{*})^{*}$) whenever $a,b\in \mathcal{A}$ with $ab^{*}=w$ ($a^{*}b=w$) and $w$ is a left (right) separating point, or $\gamma$ satisfying $a\gamma(b)^{*}=\gamma(c)^{*}d=\gamma(w^{*})^{*}$ whenever $a,b,c,d\in \mathcal{A}$ with $ab^{*}=c^{*}d =w$ and $w$ is a left or right separating point.
[1] A. Barari, B. Fadaee, H. Ghahramani, Linear maps on standard operator algebras characterized by action on zero products, Bull. Iran. Math. Soc. 45 (2019), 1573-1583.
[2] M. Bresar, Characterizing homomorphisms, multipliers and derivations in rings with idempotents, Proc. R. Soc. Edinb. Sect. A. 137 (2007), 9-21.
[3] D. Das, N. Goswami, V. N. Mishra, Some results on fixed point theorems in Banach algebras, Int. J. Anal. Appl. 13 (1) (2017), 32-40.
[4] D. Das, N. Goswami, V. N. Mishra, Some results on the projective cone normed tensor product spaces over Banach algebras, Boletim da Soc. Paranaense de Matemtica. 38 (1) (2020), 197-220.
[5] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math. 15 (2018), 15:38.
[6] H. Ghahramani, Left ideal preserving maps on triangular algebras, Iran. J. Sci. Technol. Trans. Sci. 44 (2020), 109-118.
[7] H. Ghahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc. 38 (2015), 155-164.
[8] H. Ghahramani, A. H. Mokhtari, Characterizing linear maps of standard operator algebras through orthogonality, Acta Sci. Math. 88 (2022), 777-786.
[9] H. Ghahramani, S. Sattari, Characterization of reflexive closure of some operator algebras acting on Hilbert C∗-modules, Acta. Math. Hungar. 157 (2019), 158-172.
[10] J. He, J. Li, and Qian, Characterizations of centralizers and derivations on some algebras, J. Korean Math. Soc. 54 (2017), 685-696.
[11] A. K. Mishra, -. Padmawati, L. Rathour, V. N. Mishra, Some fixed point theorem using generalized cone metric spaces with Banach algebra, High. Tech. Letters. 29 (1) (2023), 153-162.
[12] X. Qi, J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta. Math. Sinica. 29 (2013), 1245-1256.
[13] W. Xu, R. An, J. Hou, Equivalent characterization of centralizers on B(H), Acta. Math. Sinica. 32 (2016), 1113-1120.