تأثیر دوزهای مختلف سلنیوم آلی بر ظرفیت آنتیاکسیدانی کل، سطح مالوندیآلدئید و ویژگیهای فیزیکوشیمیایی گوشت برههای پرواری نژاد سنجابی تحت تنش گرمایی
محورهای موضوعی : تغذیه
1 - گروه علوم دامی واحد علوم و تحقیقات
کلید واژه: : سلنیوم, ظرفیت آنتیاکسیدانی کل, گوشت, بره پرواری, تنش گرمایی,
چکیده مقاله :
چکیده
مقدمه: تنش گرمایی یکی از مهمترین چالشهای پرورش دام در مناطق گرمسیر است که میتواند بر ویژگیهای کیفی گوشت تأثیر منفی بگذارد. در این تحقیق اثر سطوح مختلف سلنیوم آلی بر ویژگیهای کیفی گوشت برههای پرواری تحت تنش گرمایی مورد بررسی قرار گرفت
مواد و روشها: 25 رأس بره نر نژاد سنجابی بهطور تصادفی در قالب طرح کاملاً تصادفی با ۵ تیمار و 5 تکرار مورد آزمایش قرار گرفتند. تعداد 5 رأس بره در کل دوره آزمایش در دمای استاندارد و بقیه برهها در تنش گرمایی قرار داده شدند. برههای گروه شاهد منفی و شاهد مثبت جیره پایه و 3 گروه دیگر به ترتیب جیره پایه به اضافه 15/0، 30/0 و 45/0 میلیگرم در کیلوگرم ماده خشک جیره، سلنیوم از مکمل سلپلکس به مدت 40 روز دریافت کردند. پس از پایان دوره پرواربندی، از عضله لانگیسیموس دورسی نمونهبرداری شد و خصوصیات فیزیکوشیمیایی گوشت مورد ارزیابی قرار گرفت.
یافتهها: نتایج نشان داد که تنش گرمایی موجب افزایش معنیدار مالون دی آلدئید و کاهش ظرفیت آنتیاکسیدانی کل در گروه شاهد مثبت شد (05/0>P). افزودن سلنیوم آلی به جیره موجب بهبود ویژگیهای کیفی گوشت گردید، همچنین،pH و ظرفیت نگهداری آب (WHC) گوشت در تیمارهای دریافتکننده سلنیوم افزایش یافت و کمترین نیروی برشی (WBSF) در گوشت برههای تحت تنش گرمایی در گروه دریافتکننده 45/0 میلیگرم سلنیوم مشاهده شد. بررسی رنگ گوشت نشان داد که شاخص درخشندگی (L) و قرمزی (a) در تیمارهای حاوی سلنیوم افزایش و شاخص میزان زردی کاهش(b) یافت .
نتیجه گیری: نتایج این پژوهش نشان داد که افزودن سلنیوم آلی در جیره میتواند استرس اکسیداتیو را کاهش داده و ویژگیهای کیفی گوشت را بهبود دهد. که در این رابطه سطح 45/0 میلیگرم سلنیوم آلی در کیلوگرم ماده خشک بیشترین تأثیر را داشت.
واژههای کلیدی: سلنیوم، ظرفیت آنتیاکسیدانی کل، گوشت، بره پرواری، تنش گرمایی
Abstract
Introduction: Heat stress is one of the major challenges in livestock production in warm regions, negatively affecting meat quality traits. This study investigated the effects of different levels of organic selenium on the meat quality of feedlot lambs under heat stress conditions.
Materials and Methods: Twenty-five male Sanjabi lambs were randomly assigned to a completely randomized design with five treatments and five replicates . Five lambs were kept at standard temperature throughout the experiment, while the others were exposed to heat stress conditions. The negative control group and the positive control group were fed a basal diet . The other three groups received a basal diet supplemented with 0.15, 0.30, and 0.45 mg/kg DM of selenium from Sel-Plex for 40 days. At the end of the feeding trial, samples were taken from the longissimus dorsi muscle, and physicochemical properties of the meat were evaluated.
Results: The results showed that heat stress significantly increased MDA concentration and decreased TAC in the positive control group (P<0.05). Selenium supplementation improved meat quality traits, as the selenium-supplemented groups showed a significant increase in TAC and a decrease in MDA compared to the positive control group (P<0.05). Moreover, pH and WHC of the meat increased in selenium-supplemented groups, while the lowest Warner-Bratzler shear force was observed in the group receiving 0.45 mg selenium, (P<0.05). Meat color analysis revealed an increase in lightness (L*) and redness (a*) and a decrease in yellowness (b*) in selenium-supplemented groups (P<0.05).
Conclusion: Overall, the results of this study indicate that supplementing organic selenium in the diet of feedlot lambs under heat stress can reduce oxidative stress and improve meat quality traits. The 0.45 mg/kg dry matter level of organic selenium had the most pronounced effects.
Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020 Apr;162:108025. doi: 10.1016/j.meatsci.2019.108025.
Szmańko T, Lesiów T, Górecka J. The water-holding capacity of meat: A reference analytical method. Food Chem. 2021 Mar 29;357:129727. doi: 10.1016/j.foodchem.2021.129727.
Zhang ZY, Jia GQ, Zuo JJ, Zhang Y, Lei J, Ren L, Feng DY. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult Sci. 2012 Nov;91(11):2931-7. doi: 10.3382/ps.2012-02255. PMID: 23091152.
Liu, J., Wang, Z., Li, C., Chen, Z., Zheng, A., Chang, W., Liu, G., & Cai, H. (2023). Effects of Selenium Dietary Yeast on Growth Performance, Slaughter Performance, Antioxidant Capacity, and Selenium Deposition in Broiler Chickens. Animals, 13(24), 3830. https://doi.org/10.3390/ani13243830.
Chauhan SS, Dunshea FR, Plozza TE, Hopkins DL, Ponnampalam EN. The Impact of Antioxidant Supplementation and Heat Stress on Carcass Characteristics, Muscle Nutritional Profile and Functionality of Lamb Meat. Animals (Basel). 2020 Jul 28;10(8):1286. doi: 10.3390/ani10081286. PMID: 32731563; PMCID: PMC7460097.
Barbut S. Measuring water holding capacity in poultry meat. Poult Sci. 2024 May;103(5):103577. doi: 10.1016/j.psj.2024.103577. Epub 2024 Feb 22. PMID: 38518668; PMCID: PMC10973172.
Girolami A, Napolitano F, Faraone D, Braghieri A. Measurement of meat color using a computer vision system. Meat Sci. 2013 Jan;93(1):111-8. doi: 10.1016/j.meatsci.2012.08.010. Epub 2012 Aug 17. PMID: 22981646.
Baldassini WA, Machado Neto OR, Fernandes TT, de Paula Ament H, Luz MG, Santiago BM, Curi RA, Chardulo LAL. Testing different devices to assess the meat tenderness: preliminary results. J Food Sci Technol. 2021 Jun;58(6):2441-2446. doi: 10.1007/s13197-020-04941-1.
Reitznerová A, Šuleková M, Nagy J, Marcinčák S, Semjon B, Čertík M, Klempová T. Lipid Peroxidation Process in Meat and Meat Products: A Comparison Study of Malondialdehyde Determination between Modified 2-Thiobarbituric Acid Spectrophotometric Method and Reverse-Phase High-Performance Liquid Chromatography. Molecules. 2017 Nov 16;22(11):1988. doi: 10.3390/molecules22111988.
Meng T, Liu YL, Xie CY, Zhang B, Huang YQ, Zhang YW, Yao Y, Huang R, Wu X. Effects of Different Selenium Sources on Laying Performance, Egg Selenium Concentration, and Antioxidant Capacity in Laying Hens. Biol Trace Elem Res. 2019 Jun;189(2):548-555. doi: 10.1007/s12011-018-1490-z.
Belhadj Slimen I, Najar T, Ghram A, Abdrrabba M. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr (Berl). 2016 Jun;100(3):401-12. doi: 10.1111/jpn.12379.
Surai PF. Organic selenium vs. its combination with sodium selenite in poultry nutrition: food for thoughts. Poult Sci. 2021 Oct;100(10):101311. doi: 10.1016/j.psj.2021.101311.
Ren Z, Okyere SK, Zhang M, Zhang X, He H, Hu Y. Glycine Nano-Selenium Enhances Immunoglobulin and Cytokine Production in Mice Immunized with H9N2 Avian Influenza Virus Vaccine. Int J Mol Sci. 2022 Jul 18;23(14):7914. doi: 10.3390/ijms23147914.
Milewski S, Sobiech P, Błażejak-Grabowska J, Wójcik R, Żarczyńska K, Miciński J, Ząbek K. The Efficacy of a Long-Acting Injectable Selenium Preparation Administered to Pregnant Ewes and Lambs. Animals (Basel). 2021 Apr 9;11(4):1076. doi: 10.3390/ani11041076.
Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel). 2022 Jan 27;11(2):251. doi: 10.3390/antiox11020251.
Abdel-Moneim AE, Shehata AM, Mohamed NG, Elbaz AM, Ibrahim NS. Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol Trace Elem Res. 2022 Feb;200(2):768-779. doi: 10.1007/s12011-021-02662-w.
Novoselec J, Klir Šalavardić Ž, Đidara M, Novoselec M, Vuković R, Ćavar S, Antunović Z. The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs. Antioxidants (Basel). 2022 Aug 26;11(9):1664. doi: 10.3390/antiox11091664.
Zhang T, Yao C, Hu Z, Li D, Tang R. Protective Effect of Selenium on the Oxidative Damage of Kidney Cells Induced by Sodium Nitrite in Grass Carp (Ctenopharyngodon idellus). Biol Trace Elem Res. 2022 Aug;200(8):3876-3884. doi: 10.1007/s12011-021-02982-x.
Wu H, Zhao G, Liu S, Zhang Q, Wang P, Cao Y, Wu L. Supplementation with selenium attenuates autism-like behaviors and improves oxidative stress, inflammation and related gene expression in an autism disease model. J Nutr Biochem. 2022 Sep;107:109034. doi: 10.1016/j.jnutbio.2022.109034.
Wang, Zhaofeng & Tan, Yuhui & Cui, Xiongxiong & Chang, Shenghua & Xiao, Xiang & Yan, Tianhai & Wang, Hong & Hou, Fujiang. (2019). Effect of different levels of selenium yeast on the antioxidant status, nutrient digestibility, selenium balances and nitrogen metabolism of Tibetan sheep in the Qinghai-Tibetan Plateau. Small Ruminant Research. 180. 10.1016/j.smallrumres.2019.10.001.
Costa NV, Aboujaoude C, Vieira GS et al (2015) Carcass and meat quality traits in Nellore and F1 Nellore-Araguaia crosses. Genet Mol Res 14:5379–5389. doi.org/10.4238/2015.May.22.7
Zhang Z, Jia G, Zuo J, Zhang Y, Lei J, Ren L, et al. Effects of Constant and Cyclic Heat Stress on Muscle Metabolism and Meat Quality of Broiler Breast Fillet and Thigh Meat. Poult Sci (2012) 91:2931–7. doi: 10.3382/ps.2012-02255.
Khan AZ, Kumbhar S, Liu Y, Hamid M, Pan C, Nido SA, et al. Dietary Supplementation of Selenium-Enriched Probiotics Enhances Meat Quality of Broiler Chickens (Gallus Gallus Domesticus) Raised Under High Ambient Temperature. Biol Trace Elem Res (2018) 182:328–38. doi: 10.1007/s12011-017-1094-z.
Smith GC, Belk KE, Sofos JN, Tatum JD, Williams SN. Economic Implications of Improved Color Stability in Beef. Antioxidants Muscle Foods Nutr Strategies to Improve Qual (2000) 2000:397–426.
Chan JT, Omana DA, Betti M. Effect of Ultimate pH and Freezing on the Biochemical Properties of Proteins in Turkey Breast Meat. Food Chem (2011) 127:109–17. doi: 10.1016/j.foodchem.2010.12.09
Bragagnolo N, Danielsen B, Skibsted LH. Combined Effect of Salt Addition and High-Pressure Processing on Formation of Free Radicals in Chicken Thigh and Breast Muscle. Euro Food Res Technol (2006) 223:669–73. doi: 10.1007/s00217-006-0251-y.
Shi L, Youshe Ren, Chunxiang Zhang, Wenbin Yue, Fulin Lei, Effects of organic selenium (Se-enriched yeast) supplementation in gestation diet on antioxidant status, hormone profile and haemato-biochemical parameters in Taihang Black Goats, Animal Feed Science and Technology, Volume 238, 2018, Pages 57-65, ISSN 0377-8401.
Čobanová K, Faix Š, Plachá I, Mihaliková K, Váradyová Z, Kišidayová S, Grešáková Ľ. Effects of Different Dietary Selenium Sources on Antioxidant Status and Blood Phagocytic Activity in Sheep. Biol Trace Elem Res. 2017 Feb;175(2):339-346. doi: 10.1007/s12011-016-0794-0.
Juniper DT, Rymer C, Briens M. Bioefficacy of hydroxy-selenomethionine as a selenium supplement in pregnant dairy heifers and on the selenium status of their calves. J Dairy Sci. 2019 Aug;102(8):7000-7010. doi: 10.3168/jds.2018-16065.
Gautam PK, Kumar S, Tomar MS, Singh RK, Acharya A, Kumar S, Ram B. Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit Dalton's lymphoma proliferation. Biochem Biophys Rep. 2017 Sep 21;12:172-184. doi: 10.1016/j.bbrep.2017.09.005.
