بهینه یابی تولید ریز کپسول کیتوزوم حاوی هسته های زیست فعال ( تانن – اسید لینوائیک کانژوگه ) به روش سطح پاسخ
محورهای موضوعی : شیمی مواد غذاییمرتضی جمشید عینی 1 , حمید توکلی پور 2 , رضوان موسوی ندوشن 3 , محسن مختاریان 4
1 - گروه علوم و صنایع غذایی، شمالواحد تهران، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه علوم وصنایع غذائی، دانشکده علوم وصنایع غذایی ، واحدسبزوار ، دانشگاه آزاد اسلامی، سبزوار، ایران
3 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات
4 - گروه علوم و صنایع غذایی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
کلید واژه: اسید لینولئیک کانژوگه, فراصوت, تانن, کیتوزوم, عصاره پوست انار,
چکیده مقاله :
مقدمه: به دلیل ناپایداری و تجزیه آسان ترکیبات زیست فعال زیستی ادغان آن¬ها در ماتریس غذایی مشکل است. همچنین این ترکیبات در دستگاه گوارش تجزیه می¬شوند و به روده نمی¬رسند تا جذب شوند. بنابراین این مطالعه با هدف بهینه¬یابی تولید ریز کپسول کیتوزوم حاوی هسته¬های زیست فعال (¬تانن – اسید لینوائیک کانژوگه¬) به روش سطح پاسخ انجام شد. مواد و روش¬ها: پس از استخراج تان به کمک امواج فراصوت، کیتوزوم¬های حاوی هسته فعال زیستی (¬تانن – اسید لینوائیک کانژوگه) ¬به روش حرارتی تولید شدند. شرایط بهینه استخراج به روش سطح پاسخ با مدل باکس-بنکن بهینه¬یابی شد. متغیرهای غلظت ترکیبات زیست فعال (¬در محدوده 100 تا ppm 300)¬، غلطت کیتوزان (1/0 تا 3/0 %w/v) و دامنه امواج فراصوت (50 تا 90 %) به عنوان متغیرهای مستقل در نظر گرفته شدند. کیتوزوم بهینه از نظر ذرات (کمینه¬)، راندمان ریزپوشانی (بیشینه¬) و بار سطحی (بیشینه¬) انتخاب شدند. یافته¬ها: طی بهینه¬یابی تولید ریز کپسول کیتوزوم حاوی هسته¬های زیست فعال (¬تانن-اسید لینوائیک کانژوگه¬) شامل غلظت کیتوزان (1/0 -3/0 درصد)، بسامد امواج فراصوت (kHZ 90-50) و غلظت تانن (ppm 300-100) نانوکیتوزوم¬ها اندازه ذرات nm 256/126، کارایی کپسولاسیون 9982/84 درصد و پتانسیل زتا 7043/37 بود. برهمکنش موفقیت آمیز بین کیتوزان و زیست¬های فعال قابل استخراج از انار در بررسی XRD قابل اثبات است. ذرات تقریباً کروی کیتوزان با اندازه 66/77 و nm 90/79 با يكنواختي مشاهده شده در اندازه ذرات، توزيع نرمال اندازه ذرات را تأييد کرد. نتیجه¬گیری کلی: نتایج حاضر نشان داد که پلیمرهای زیستی نقش کلیدی در پایداری ساختار غشای لیپوزومی و انتشار پایدار مولکولهای به دام افتاده توسط یک مانع فضایی بر روی سطح دارند. این یک سکوی بالقوه برای طراحی مناسب حاملها برای مواد مغذی یا نگهدارندهها به منظور افزایش ماندگاری و ایمنی ماتریسهای غذایی فراهم خواهد کرد.
Introduction: Due to the instability and easy decomposition of their bioactive compounds in the food matrix, it is difficult. Also, these compounds are decomposed in the digestive system and do not reach the intestine to be absorbed. Therefore, this study aimed to optimize the production of chitosome microcapsules containing bioactive nuclei (tannin-conjugated linoleic acid) using the response surface method. Materials and methods: After extracting tannin by ultrasonic, chitosomes containing a bioactive core (tannin-conjugated linoleic acid) were produced with the thermal method. The optimal extraction conditions were optimized by the RSM with the Box-Benken model. The variables of concentration of bioactive compounds (in the range of 100 to 300 ppm), chitosan gelate (0.1 to 0.3%w/v), and the range of ultrasound waves (50 to 90%) were considered independent variables. The optimal chitosome was selected in terms of particles (min), microencapsulation efficiency (max), and surface charge (max). Findings: During the optimization of chitosome microcapsule production containing bioactive cores (tannin-linoic acid conjugated) including chitosan concentration (0.3-0.1%), ultrasound frequency (50-90kHz) and tannin concentration (100-300 ppm) Nanochitosomes particle size was 126.256 nm, encapsulation efficiency was 84.9982% and zeta potential was 37.7043. The successful interaction between chitosan and bioactive pomegranate extract can be proven in XRD analysis. Almost spherical chitosan particles with a size of 77.66 and 79.90 nm with the uniformity observed in the particle size confirmed the normal distribution of the particle size. General conclusion: The present results showed that biopolymers play a key role in the stability of the liposome membrane structure and the stable release of molecules trapped by a spatial barrier on the surface. It will provide a potential platform for the proper design of carriers for nutrients or preservatives to increase the shelf life and safety of food matrices.
AOAC. (1998). Official Methods of Analysis of the Association of Official Analytical Chemists (17th ed.). Association of Official Analytical Chemists. Washington, DC, USA.
Ain, H. B. U., Tufail, T., Bashir, S., Ijaz, N., Hussain, M., Ikram, A., ... & Saewan, S. A. (2023). Nutritional importance and industrial uses of pomegranate peel: A critical review. Food Science & Nutrition, 11(6), 2589-2598. https://doi.org/10.1002/fsn3.3320
Badawy, S., Liu, Y., Guo, M., Liu, Z., Xie, C., Marawan, M. A., ... & Martínez, M. A. (2023). Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not?. Food Research International, 113158. https://doi.org/10.1016/j.foodres.2023.113158
Carmagnani, H.J., Mansano, G.B. and Sobreira, F., (2020). Optimization of the extraction process of Phyllanthus niruri L. Ultrasound, 21, p.X22.
Carvalho Filho, J. M. (2014). Pomegranate seed oil (Punica granatum L.): a source of punicic acid (conjugated α-linolenic acid). J Human Nutri Food Sci, 2(1), 1-11.
Ciolacu, D., Ciolacu, F., & Popa, V. I. (2011). Amorphous cellulose—structure and characterization. Cellulose chemistry and technology, 45(1), 13.
Du, M., Jin, J., Wu, G., Jin, Q., & Wang, X. (2023). Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits. Critical Reviews in Food Science and Nutrition, 1-15. https://doi.org/10.1080/10408398.2023.2198006
Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2023). Vesicular delivery systems: applications and future trends in food technology. In Liposomal Encapsulation in Food Science and Technology (pp. 15-38). Academic Press. https://doi.org/10.1016/B978-0-12-823935-3.00006-0
Gholipour, A., Sadegheih, A., Mostafaeipour, A., & Fakhrzad, M. B. (2024). Designing an optimal multi-objective model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran. Environment, Development and Sustainability, 26(2), 3993-4027. https://doi.org/10.1007/s10668-022-02868-5
Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455-461. https://doi.org/10.1016/j.foodres.2018.12.011
Hajipour, F., Asad, S., Amoozegar, M. A., Javidparvar, A. A., Tang, J., Zhong, H., & Khajeh, K. (2021). Developing a fluorescent hybrid nanobiosensor based on quantum dots and azoreductase enzyme for methyl red monitoring. Iranian Biomedical Journal, 25(1), 8. https://doi.org/10.29252/ibj.25.1.8
Hashem, A., Aniagor, C. O., Fikry, M., Taha, G. M., & Badawy, S. M. (2023). Characterization and adsorption of raw pomegranate peel powder for lead (II) ions removal. Journal of Material Cycles and Waste Management, 25(4), 2087-2100. https://doi.org/10.1007/s10163-023-01655-2
Hemalatha, M., & Brinda Lakshmi, A. (2021). Catalytic hydrolysis of fruit waste using magnetic carbon acid catalyst for bioethanol production. Waste and Biomass Valorization, 12, 971-983. https://doi.org/10.1007/s12649-020-01019-z
Hoque, M. B., Tanjila, M. J., Hosen, M. I., Hannan, M. A., Haque, P., Rahman, M. M., & Hasan, T. (2024). A comprehensive review of the health effects, origins, uses, and safety of tannins. Plant and Soil, 1-20. https://doi.org/10.1007/s11104-024-06768-7
Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International journal of biological macromolecules, 125, 621-629. https://doi.org/10.1016/j.ijbiomac.2018.12.096
Joy, J. M., Amruth, P., Dara, P. K., Renuka, V., & Anandan, R. (2023). Liposome mediated encapsulation and role of chitosan on modulating liposomal stability to deliver potential bioactives-A review. Food Hydrocolloids for Health, 100142. https://doi.org/10.1016/j.fhfh.2023.100142
Kumar, K., Srivastav, S. and Sharanagat, V.S., 2021. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics sonochemistry, 70, p.105325. https://doi.org/10.1016/j.ultsonch.2020.105325
Leong, T., Ashokkumar, M., & Kentish, S. (2011). The fundamentals of power ultrasound—A review. Acoustics Australia, 39(2), 54-63.
Mamvura, T. A., Paterson, A. E., & Iyuke, S. E. (2018). Energy changes during use of high-power ultrasound on food grade surfaces. South African Journal of Chemical Engineering, 25(1), 62-73. https://hdl.handle.net/10520/EJC-103495dbda
Mason, T. J., Cobley, A. J., Graves, J. E., & Morgan, D. (2011). New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrasonics sonochemistry, 18(1), 226-230. https://doi.org/10.1016/j.ultsonch.2010.05.008
Medina-Torres, N., Espinosa-Andrews, H., Trombotto, S., Ayora-Talavera, T., Patrón-Vázquez, J., González-Flores, T., ... & Pacheco, N. (2019). Ultrasound-assisted extraction optimization of phenolic compounds from Citrus latifolia waste for chitosan bioactive nanoparticles development. Molecules, 24(19), 3541. https://doi.org/10.3390/molecules24193541
Meng, R., Wu, Z., Xie, Q. T., Cheng, J. S., & Zhang, B. (2021). Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chemistry, 340, 127893. https://doi.org/10.1016/j.foodchem.2020.127893
Mokhtarian, M. O. H. S. E. N., Tavakolipour, H., Jafari Savareh, S., & Amiri, M. (2014). Determination of optimal parameters to extraction and formulation of functional drink from green tea and determining its physicochemical and rheological properties. Research and Innovation in Food Science and Technology, 3(1), 51-66. [in Persian]. https://doi.org/10.22101/JRIFST.2014.06.15.315
Moorthy, I. G., Maran, J. P., Muneeswari, S., Naganyashree, S., & Shivamathi, C. S. (2015). Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. International journal of biological macromolecules, 72, 1323-1328. https://doi.org/10.1016/j.ijbiomac.2014.10.037
Tan, T. B., Yussof, N. S., Abas, F., Mirhosseini, H., Nehdi, I. A., & Tan, C. P. (2016). Stability evaluation of lutein nanodispersions prepared via solvent displacement method: The effect of emulsifiers with different stabilizing mechanisms. Food chemistry, 205, 155-162. https://doi.org/10.1016/j.foodchem.2016.03.008
Nejatian, M., Yazdi, A. P. G., Fattahi, R., Saberian, H., Bazsefidpar, N., Assadpour, E., & Jafari, S. M. (2024). Improving the storage and oxidative stability of essential fatty acids by different encapsulation methods; a review. International Journal of Biological Macromolecules, 129548. https://doi.org/10.1016/j.ijbiomac.2024.129548
Pulicharla, R., Marques, C., Das, R. K., Rouissi, T., & Brar, S. K. (2016). Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation. International journal of biological macromolecules, 88, 171-178. https://doi.org/10.1016/j.ijbiomac.2016.03.036
Putera, H. D., Doewes, R. I., Shalaby, M. N., Ramírez-Coronel, A. A., Clayton, Z. S., Abdelbasset, W. K., ... & Pahlavani, N. (2023). The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. Nutrition & Metabolism, 20(1), 35. https://doi.org/10.1186/s12986-023-00758-9
Rajha, H. N., Koubaa, M., Boussetta, N., Maroun, R. G., Louka, N., Lebovka, N., & Vorobiev, E. (2020). Selective ultrasound‐assisted aqueous extraction of polyphenols from pomegranate peels and seeds. Journal of Food Processing and Preservation, 44(7), e14545. https://doi.org/10.1111/jfpp.14545
Rudzińska, M., Grygier, A., Knight, G., & Kmiecik, D. (2024). Liposomes as Carriers of Bioactive Compounds in Human Nutrition. Foods, 13(12), 1814. https://doi.org/10.3390/foods13121814
Seyedabadi, M. M., Rostami, H., Jafari, S. M., & Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food bioscience, 40, 100857. https://doi.org/10.1016/j.fbio.2020.100857
Siddiqui, S. A., Singh, S., & Nayik, G. A. (2024). Bioactive compounds from pomegranate peels-Biological properties, structure–function relationships, health benefits and food applications–A comprehensive review. Journal of Functional Foods, 116, 106132. https://doi.org/10.1016/j.jff.2024.106132
Tavakolipour, H., Mokhtarian, M., & Kalbasi‐Ashtari, A. (2017). Lipid oxidation kinetics of pistachio powder during different storage conditions. Journal of food process engineering, 40(3), e12423. https://doi.org/10.1111/jfpe.12423
Xu, X., Lu, W., Zhu, J., Pan, X., & Zhu, X. (2021). An on-demand dissoluble chitosan hydrogel containing dynamic diselenide bond. Gels, 7(1), 21. https://doi.org/10.3390/gels7010021
Yang, F., Feng, D., Oyeyinka, S. A., Zhang, H., Chen, K., & Yu, D. (2024). Preparation and Release Control of Starch-Cla Complex. Available at SSRN 4814580. http://dx.doi.org/10.2139/ssrn.4814580
Zhang, H., & Zhao, Y. (2015). Preparation, characterization and evaluation of tea polyphenol–Zn complex loaded β-chitosan nanoparticles. Food Hydrocolloids, 48, 260-273. https://doi.org/10.1016/j.foodhyd.2015.02.015
Zhuang, J., Ping, Q., Song, Y., Qi, J., & Cui, Z. (2010). Effects of chitosan coating on physical properties and pharmacokinetic behavior of mitoxantrone liposomes. International journal of nanomedicine, 407-416.