• Home
  • Neda Aghaei Bahmanbeglou
  • OpenAccess
    • List of Articles Neda Aghaei Bahmanbeglou

      • Open Access Article

        1 - The effect of high-intensity interval training on the content of autophagy proteins (BECLIN1 and AMBRA1) in the skeletal muscle of aged rats
        Hamid Khodaverdi Neda Aghaei Bahmanbeglou saeedeh Shadmehri
        Introduction: One of the complications associated with aging is the reduction of muscle volume, which is caused by defects in cellular pathways such as autophagy. Exercises can be a key factor in reversing or increasing this complication; Therefore, the aim of this rese More
        Introduction: One of the complications associated with aging is the reduction of muscle volume, which is caused by defects in cellular pathways such as autophagy. Exercises can be a key factor in reversing or increasing this complication; Therefore, the aim of this research is the effect of high-intensity interval training (HIIT) on the content of autophagy proteins (BECLIN1 and AMBRA1) in the skeletal muscle of aged rats. Materials and Methods: The current research is of experimental-fundamental type, in which 12, 20-month-old male Sprague-Dawley rats with an average weight of 400±30 grams were randomly divided into 2 groups: 1) control (6 head) and 2) HIIT (6 head). The HIIT training program consisted of 8 weeks and 3 sessions per week with an intensity of 85-90% of VO2max. After 48 hours after the last training session, the EDL muscle tissue of the rats was removed. Data analysis Data were analysed through independent t-test in SPSS version 27 and GraphPad Prism version 2.2.10 software. The significance level was less than p≥0.05. Results: Eight weeks of HIIT training increased BECLIN1 protein intracellular content (P=0.0001) and decreased AMBRA1 protein intracellular content (P=0.0001) in EDL muscle of aged rats. Conclusion: Considering the conflicting results in the content of BECLIN1 and AMBRA1 proteins, it suggests that the adaptive responses of HIIT differ in the regulation of the autophagy pathway. Manuscript profile