Influence of Transglutaminase Treatment on Proteolysis and Lipolysis of Low-Fat White-Brined Cheese Incorporated with Whey Proteins during Ripening
Subject Areas : MicrobiologyH. Jooyandeh 1 , E. Danesh 2 , M. Goudarzi 3
1 - Associate Professor of the Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Khuzestan Agricultural Sciences and Natural Resources University, Mollasani, Ahvaz, Iran.
2 - M. Sc. Student of the Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Khuzestan Agricultural Sciences and Natural Resources University, Mollasani, Ahvaz, Iran.
3 - M. Sc. Student of the Department of Food Science & Engineering, Faculty of Biosystem Engineering, University of Tehran, Karaj, Iran.
Keywords: Lipolysis, Low-Fat White-Brined Cheese, Proteolysis, Transglutaminase Enzyme, Whey Protein Isolate,
Abstract :
Introduction: Fat reduction adversely affects different properties of cheese. Transglutaminase treatment of low-fat milk incorporated with whey proteins makes it possible to develop a low-fat white-brined cheese with rheological properties similar to the full-fat counterpart. The objective of this study was to monitor the changes in proteolysis and lipolysis indices of transglutaminase–treated low-fat white-brined cheese during ripening. Materials and Methods: A control full-fat (3% fat), a control low-fat (1% fat) and an enzyme-treated low-fat (1% fat, 0.9 U transglutaminase/g protein, 5% whey protein isolate/L milk) white-brined cheese were produced and their physicochemical properties, proteolysis and lipolysis indices, FFA profile and organoleptic attributes were studied after 3, 20, 40 and 60 days. Results: The proteolysis and lipolysis indices of all samples showed an increasing trend during ripening (p<0.05). The development of proteolysis and lipolysis in white-brined cheese with reduced fat content was noticeably slower than its full-fat counterpart (p<0.05). Transglutaminase treatment of low-fat milk incorporated with whey proteins retarded the syneresis of resultant cheese and hereby promoted its extent of proteolysis and lipolysis (p<0.05). The decreasing rate of short-chain free fatty acids production was more pronounced than that of medium- and long-chain free fatty acids, due possibly to their contribution to production of flavor compounds. Flavor of enzyme-treated low-fat cheese was considerably improved during ripening (p<0.05) but was less appreciated by consumers than that of control full-fat sample (p<0.05). Conclusion: Transglutaminase treatment of low-fat milk incorporated with whey proteins results in a low-fat white-brined cheese with accelerated proteolysis and lipolysis and thus, more desirable organoleptic properties.
دانش، ع.، جوینده، ح. و گودرزی، م. (1395). تأثیر تیمار آنزیمی ترانسگلوتامیناز و ایزوله پروتئین آبپنیر برویژگیهای فیزیکوشیمیایی، بافتی و ارگانولپتیکی پنیر سفید آبنمکی کمچرب. فصلنامه علمی پژوهشی علوم و صنایع غذایی ایران، ]در دست چاپ[.
کرمی، م.، احسانی، م.ر.، موسوی، م. ع.، رضایی، ک. ا. و صفری، م. (1388). تاثیر مدت زمان رسیدن بر پروفیل اسیدهای چرب، ریزساختار و خواص حسی پنیر UF فتا. مجله مهندسی بیوسیستم ایران، سال یکم، شماره 40، صفحات 110-101.
Aminifar, M. & Emam-Djomeh, Z. (2014). Changes of texture, microstructure and free fatty acid contents of Lighvan cheese during accelerated ripening with lipase. Journal of Agricultural Science and Technology, 16(1), 113-123.
AOAC. (2000). Official Methods of Analysis. 17th ed, Association of Official Analytical Chemists, Gaithersburg, Maryland, USA.
Banks, J. M. (2004). The technology of low‐fat cheese manufacture. International Journal of Dairy Technology, 57(4), 199-207.
Broadbent, J. R., McMahon, D. J., Oberg, C. J. & Welker, D. L. (2001). Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. International Dairy Journal, 11(4), 433-439.
Collins, Y. F., McSweeney, P. L. & Wilkinson, M. G. (2003). Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. International Dairy Journal, 13(11), 841-866.
Costa, N. E., Hannon, J. A., Guinee, T. P., Auty, M. A. E., McSweeney, P. L. H. & Beresford, T. P. (2010). Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat
Cheddar cheese. Journal of Dairy Science, 93(8), 3469-3486.
Dulley, J. R. & Grieve, P. A. (1974). Volatile fatty acid production in Cheddar cheese. Australian Journal of Dairy Technology, 29(3), 120.
Garcia-Lopez, S., Echeverria, E., Tsui, I. & Balch, B. (1994). Changes in the content of conjugated linoleic acid (CLA) in processed cheese during processing. Food Research International, 27(1), 61-64.
Georgala, A., Moschopoulou, E., Aktypis, A., Massouras, T., Zoidou, E., Kandarakis, I. & Anifantakis, E. (2005). Evolution of lipolysis during the ripening of traditional Feta cheese. Food Chemistry, 93(1), 73-80.
Katsiari, M. C. & Voutsinas, L. P. (1994). Manufacture of low-fat Feta cheese. Food Chemistry, 49(1), 53-60.
Katsiari, M. C., Voutsinas, L. P., Kondyli, E. & Alichanidis, E. (2002). Flavour enhancement of low-fat Feta-type cheese using a commercial adjunct culture. Food Chemistry, 79(2), 193-198.
Khosrowshahi, A., Madadlou, A., zadeh Mousavi, M. E. & Emam-Djomeh, Z. (2006). Monitoring the chemical and textural changes during ripening of Iranian White cheese made with different concentrations of starter. Journal of Dairy Science, 89(9), 3318-3325.
Kondyli, E., Massouras, T., Katsiari, M. C. & Voutsinas, L. P. (2003a). Lipolysis and volatile compounds in low-fat Kefalograviera-type cheese made with commercial special starter cultures. Food Chemistry, 82(2), 203-209.
Kondyli, E., Massouras, T., Katsiari, M. C. & Voutsinas, L. P. (2003b). Free fatty acids and volatile compounds in low-fat Kefalograviera-type cheese made with commercial adjunct cultures. International Dairy Journal, 13(1), 47-54.
Kuchroo, C. N. & Fox, P. F. (1982). Soluble nitrogen in cheddar cheese: comparison of extraction procedures. Milchwissenschaft, 37, 331-335.
Madadlou, A., Mousavi, M. E. & Farmani, J. (2007). The influence of brine concentration on chemical composition and texture of Iranian white cheese. Journal of Food Engineering, 81(2), 330-335.
Marshal, R.T. (1992). Standard methods for the examination of dairy products. pp: 271-272.
Metcalfe, L. D., Schmitz, A. A. & Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry, 38(3), 514-515.
Mleko, S., Gustaw, W., Glibowski, P. & Pielecki, J. (2004). Stress relaxation study of UF-milk cheese with transglutaminase. Egyptian Journal of Dairy Science, 32, 237-244.
Özer, B., Hayaloglu, A. A., Yaman, H., Gürsoy, A. & Şener, L. (2013). Simultaneous use of transglutaminase and rennet in white-brined cheese production. International Dairy Journal, 33(2), 129-134.
Park, Y. W. (2001). Proteolysis and lipolysis of goat milk cheese. Journal of Dairy Science, 84, E84-E92.
Rahimi, J., Khosrowshahi, A., Madadlou, A. & Aziznia, S. (2007). Texture of low-fat Iranian white cheese as influenced by gum tragacanth as a fat replacer. Journal of dairy science, 90(9), 4058-4070.
Ritvanen, T., Lampolahti, S., Lilleberg, L., Tupasela, T., Isoniemi, M., Appelbye, U. & Uusi-Rauva, E. (2005). Sensory evaluation, chemical composition and consumer acceptance of full fat and reduced fat cheeses in the Finnish market. Food Quality and Preference, 16(6), 479-492.
Romeih, E. A., Michaelidou, A., Biliaderis, C. G. & Zerfiridis, G. K. (2002). Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes. International Dairy Journal, 12(6), 525-540.
Rudan, M. A., Barbano, D. M., Yun, J. J. & Kindstedt, P. S. (1999). Effect of fat reduction on chemical composition, proteolysis, functionality, and yield of Mozzarella cheese. Journal of Dairy Science, 82(4), 661-672.
Sabbagh, N., Gheisari, H. R. & Aminlari, M. (2010). Monitoring the chemical and microbiological changes during ripening of Iranian probiotic low-fat white cheese. American Journal of Animal and Veterinary Sciences, 5(4), 249-257.
Sahan, N., Yasar, K., Hayaloglu, A. A., Karaca, O. B. & Kaya, A. (2008). Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese. Journal of Dairy Research, 75(01), 1-7.
Sayadi, A., Madadlou, A. & Khosrowshahi, A. (2013). Enzymatic cross-linking of whey proteins in low fat Iranian white cheese. International Dairy Journal, 29(2), 88-92.
Sousa, M. J., Ardö, Y. & McSweeney, P. L. H. (2001). Advances in the study of proteolysis during cheese ripening. International Dairy Journal, 11(4), 327-345.
Urbach, G. (1997). The flavour of milk and dairy products: II. Cheese: contribution of volatile compounds. International Journal of Dairy Technology, 50(3), 79-89.
Zalazar, C. A., Zalazar, C. S., Bernal, S., Bertola, N., Bevilacqua, A. & Zaritzky, N. (2002). Effect of moisture level and fat replacer on physicochemical, rheological and sensory properties of low fat soft cheeses. International Dairy Journal, 12 (1), 45-50.
Zerfiridis, G. K. (2001) Soft cheeses. In: G. K. Zerfiridis (Ed.), Technology of dairy products, I: Cheese-making. Thessaloniki, Greece: Giaxoudi-Giapouli. (pp. 155–198).