Evaluation of Antioxidant and Functional Properties of Hydrolyzed Protein from Chlorella Vulgaris by Enzymatic Hydrolysis
Subject Areas :Shima Taghdiri 1 , Mojgan Emteyazjoo 2 * , Mohammad Hossein Azizi 3 , Peiman Ariayi 4 , Marjaneh Sedaghati 5
1 - دانشجویدکتری، گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیار، دانشکده علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
3 - استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.
4 - دانشیار،گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی،آمل، ایران.
5 - استادیار، گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
Keywords: Antioxidant, Alcalase and Flavourzyme Enzyme, Hydrolyzed Protein, Chlorella Vulgaris.,
Abstract :
Microalgae are one of the oldest inhabitants of the oceans and freshwaters. One of the most famous is the green seaweed Chlorella vulgaris. In this study, the antioxidant and functional properties of the hydrolyzed protein of Chlorella vulgaris were determined. For this purpose, the hydrolyzed protein of Chlorella vulgaris was produced by commercial enzymes alcalase and flavourzyme at intervals of 10, 20 and 30 minutes. The results related to the properties of hydrolyzed protein showed that the protein hydrolyzed by alcalase had a higher degree of hydrolysis than the enzyme flavourzyme. As well as, increasing the hydrolysis time had a positive effect on the mentioned parameters (p <0.05). The highest values of degree of hydrolysis and protein recovery were observed by alcalase at 30 minutes (37.63% and 18.44%, respectively). Chlorella vulgaris was high in essential amino acids. Then, the antioxidant and functional properties of proteins (by both enzymes at 30 minutes) were measured with molecular weights of 3, 5 and 10 kDa. The results showed that the protein hydrolyzed by alcalase enzyme with a molecular weight of 3 kDa had the highest antioxidant activity (p <0.05) and also had good functional properties. Therefore, the hydrolyzed protein derived from the alga Chlorella vulgaris (by the enzyme alcalase) can be used as a substitute for animal proteins in the diet as well as functional compounds in food formulations.
1. Abdel-Karim, O., Gheda, S., Ahmed Ismail, G. and Abo-Shady, A., 2020. Phytochemical Screening and antioxidant activity of Chlorella vulgaris. Delta Journal of Science, 41, pp. 81- 91.
2. Aderinola, T., Fagbemi, T., Enujiugha, V., Monisola Alashi, A. and Emmanuel Aluko, R., 2018. Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 4 (10), pp.870-887.
3. AOAC., 2005. Official Method of Analgsis (17th ed). Washington, DC: Association of Official Analytical chemists.
4. Bera, M.B. and Mukherjee, R.K., 1989. Solubility, emulsifying, and foaming properties of rice bran protein concentrates. J. Food Sci, 54(1).,142-145.
5. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M., 2009. Antioxidant & free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114, pp.1198-1205.
6. Camila Da Costa, D., Karina Oliveira, L., Caio Hendrix, L., Fabíola Helena, D., Da Rocha, M. and Prentice, P., 2019. Evaluation of the Antioxidant and Antimicrobial Activity of Protein Hydrolysates and Peptide Fractions Derived from Colossomamacropomum and Their Effect on Ground Beef Lipid Oxidation. Journal of Aquatic Food Product Technology, 28(6), pp. 677-688.
7. Chi, C. F., Hu, F. Y., Wang, B., Li, T. and Ding, G. F., 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, pp.301-313.
8. Chia, SR., Chew, KW., Zaid, HFM., Chu, D-T., Tao, Y. and Show, PL., 2019. Microalgal Protein Extraction From Chlorella vulgaris FSP-E Using Triphasic Partitioning Technique With Sonication. Front. Bioeng. Biotechnol, 7, p.396.
9. Elavarasan, K., Naveen Kumar, V. and Shamasundar, B. A., 2014. Antioxidant and Functional Properties of Fish Protein Hydrolysates from Fresh Water Carp (Catla catla) as Influenced by the Nature of Enzyme. Journal of Food Processing and Preservation, 38 (3), pp. 1207-1214.
10. FAO/WHO., 1990. Energy and protein requirements. Report of joint FAO/ WHO/UNU Expert Consultation Technical Report. FAO/WHO and United Nations University, Geneva, Series No. 724
11. Feyzi, S., Varidi, M., Zareb, F. and Varidi, M. J., 2015. Extraction Optimization of Fenugreek Seed Protein. science of food and agriculture, 15, pp. 3165–3176.
12. Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M. and Raymundo, A., 2010. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), pp. 1656-1664.
13. Hamzeh, A., Rezaei, M. and Khodabandeh, S., 2019. Antiproliferative and antioxidative activities of cuttlefish (Sepia pharaonis) protein hydrolysates as affected by degree of hydrolysis. Food Measure, 12, pp.721–727.
14. Irene Kai Ru, Tiong., Thilahgavani, Nagappan., Mohd Effendy, Abdul Wahid., Tengku Sifzizul Tengku, Muhammad., Toda, Tatsuki., Woro Hastuti, Satyantini., Gunanti, Mahasri., Patrick, Sorgeloos., Yeong Yik, Sung., 2020b. Antioxidant capacity of five microalgae species and their effect on heat shock protein 70 expression in the brine shrimp
Artemia, Aquaculture Reports, 18, pp.100433, ISSN 2352-5134,
15. Irene Tiong, Kai Ru., Yeong, Yik Sung., Malinna, Jusoh., Mohd Effendy Abdul Wahid. and Thilahgavani, Nagappan., 2020a. Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts, Applied Phycology, pp. 2- 11.
16. Jacob-Lopes, E., Ramírez Mérida, L. G., Queiroz, M. I., Zepka, L. Q., 2015. Microalgal biorefineries. In E. Jacob- Lopes & L. Q. Zepka (Eds.), Biomass production and uses. London: IntechOpen.
17. Jia, J., Ma, H., Zhao, W., Wang, Z., Tian, W. and Luo, L., 2010. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 119, pp. 336–42.
18. Liaset, B., Nortvedt, R., Lied, E. and Espe, M., 2002. Studies on the nitrogen recovery in enzymatichydrolysis of Atlantic salmon (Salmo salar) frames by Protamex™ protease. Process Biochemistry, 37, pp.1263–1269.
19. Mohamed, B. E., Abo-El-Khair, M., Samah, M. and Shalaby, G., 2013. Quality of Novel Healthy Processed Cheese Analogue Enhanced with Marine Microalgae Chlorella vulgaris Biomass. World Applied Sciences Journal, 23 (7), pp. 914-925
20. Nasir, S.N.A.M .and Sarbon, N.M., 2019. Angiotensin converting enzyme (ACE), antioxidant activity and functional properties of shortfin scad (Decapterus macrosoma) muscle protein hydrolysate at different molecular weight variations. Biocatalysis and Agricultural Biotechnology, 20, pp.101254.
21. Nemati, M., Javadian, S. R., Ovissipour, M. and Keshavarz, M., 2012. A study on the properties of alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal,18 (7), pp. 950-956.
22. Ovissipour, M., Safari, R., Motamedzadegan, A. and Shabanpour, B., 2012. Chemical and biochemical hydrolysis of Persian sturgeon (Acipenser persicus) visceral protein. Food and Bioprocess Technology, 5 (2), pp. 460-465.
23. Pezeshk, S., Ojagh, S., Rezaei, M. and Shabanpour, B.,2019. Antioxidant and Antibacterial Effect of Protein Hydrolysis of Yellowfin Tuna Waste on Flesh Quality Parameters of Minced Silver Carp. Journal of Genetic Resources, 3(2), pp.103-112.
24. Phelan, M., Aherne, A., FitzGerald, R. and O'Brien, N., 2009. Caseinderived bioactive peptides: biological effects, uses, safety aspects and regulatory status. International Dairy Journal,19(11), pp. 643-654.
25. Prasad, K.N., Xie, H., Hao, J., Yang, B., Qiu, S., Wei, X., Chen, F. and Jiang, Y., 2010 .Antioxidant and anticancer activities of 8-hydroxypsoralen isolated from wampee [Clausena lansium (Lour.) Skeels] peel. Food Chemistry, 118, pp. 62-66.
26. Rajabzadeh, M., Pourashouri, P., Shabanpour, B. and Alishahi, A., 2017. Amino acid composition, antioxidant and functional properties of protein hydrolysates from the roe of rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology, 53(2), pp.313–319.
27. Razali, A.N., Amin, A.M. and Sarbon, N.M., 2015. Antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate at different molecular weight. International Food R esearch Journal, 22(2), pp. 651–660.
28. Saallah, S., Ishak, N.H. and Sarbon, N.M., 2020. Effect of different molecular weight on the antioxidant activity and physicochemical properties of golden apple snail (Ampullariidae) protein hydrolysates. Food Research, 4 (4), pp. 1363–1370.
29. Safi, C., Zebib, B., Merah, O. and Pontalier, P., 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, pp.265–278.
30. Shahi, Z., Sayyed-Alangi, S. Z. and Najafian, L., 2020. Effects of enzyme
type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon, 6(2), pp. 256-270.
31. Shahidi, F. and Onodenalore, A., 1995. Water dispersions of Myofibrillar Proteins from Capelin (Mallotus villosus). Food Chemistry, 53, pp.51-54.
32. Sheng, L., Olsen, S.A., Hu, J., Yue, W., Means, W.J. and Zhu, M.J., 2016, Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC “top-six” non-O157 Shiga toxin producing E. coli. International Journal of Food Microbiology. 229, pp. 24-32.
33. Slizyte, R., Mozuraitytė, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M. and Rustad, T., 2009. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (gadus morhua) Backbones. Process Biochemistry, 44, pp. 668-677.
34. Taghavi Takyar, M.¬B., Khajavi, S. H. and Safari, R., 2019. Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. LWT, 100, pp. 244- 249.
35. Taheri, A., Anvar, S., Ahari, H. and Fogliano, V., 2013. Comparison the functional properties of protein Hydrolysates from poultry byproducts and rainbow trout . IJFS, 12(1), pp. 154-169
36. Varedesara, M.S., Ariaii, P. and Hesari, J., 2021. The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Sci Nutr, 9, pp. 2180–2190.
37. Wouters, A. G. B., Rombouts, I., Fierens, E., Brijs, K. and Delcour, J.A., 2016. Relevance of the functional properties of enzymatic plant protein Hydrolysates in food systems. Compr Rev Food Sci Food Saf, 15, pp.786– 800.
38. Wu, W.U., Hettiarachchy, N.S. and Qi, M., 1998. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. Journal of American Oil Chemists' Society, 75(7), pp.845–850.
39. Yaghoubzadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R. and Fattahi, E., 2020. Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate. International Journal of Peptide Research and Therapeutics, 26, pp.625–632.
40. Ye, N., Hu, P., Xu, S., Chen, M., Wang, S., Hong, J. and Cai, T., 2018. Preparation and characterization of antioxidant peptides from carrot seed protein. Journal of Food Quality, 15 (2), pp. 1–9.
41. Zielinska, E., Kara´s, M. and Baraniak, B., 2018. Comparison of functional properties of edible insects and protein preparations thereof. LWT, 91, pp.168–174.