Investigation of antioxidant and antimicrobial properties of biosurfactants derived from Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus casei
Subject Areas :
Food Hygiene
Behzad Akbarzadeh Najar
1
,
Peiman Ariaii
2
*
,
Mahro Esmaeili
3
,
Roya Bagheri
4
1 - Department of Food Science and Technology, Ayatolla Amoli Branch, Islamic Azad University, Amol, Iran
2 - Department of Food Science and Technology, Ayatolla Amoli Branch, Islamic Azad University, Amol, Iran
3 - Department of Food Science and Technology, Ayatolla Amoli Branch, Islamic Azad University, Amol, Iran
4 - Department of Food Science and Technology, Ayatolla Amoli Branch, Islamic Azad University, Amol, Iran
Received: 2023-04-06
Accepted : 2023-06-19
Published : 2023-03-21
Keywords:
DPPH,
Staphylococcus aureus,
Lactobacillus,
Biosurfactant,
hydroxyl,
Abstract :
Biosurfactants are amphipathic compounds that are produced by many microorganisms and show a wide range of biological activities due to their unique characteristics. This study aimed to determine the antioxidant and antimicrobial potential of the biosurfactants isolated from Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus casei. The antioxidant activity of biosurfactant was evaluated in vitro conditions using the ability to inhibit 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl free radicals and antimicrobial activities using the diffusion method in agar wells against pathogenic bacteria. The results showed that the inhibitory activity of DPPH and hydroxyl of biosurfactants at a concentration of 5 mg/ml was 78.51-81.99% and 69.51-71.56%, respectively, and the highest antioxidant activity was related to Lactobacillus plantarum (P<0.05). The results of inhibiting microbial growth showed that all biosurfactants had high antimicrobial activity and the antimicrobial activity against Staphylococcus aureus (gram-positive) was higher than other bacteria (gram-negative). No significant difference was observed among different biosurfactants. It seems that biosurfactants obtained from lactobacilli can be used as natural antioxidants and antimicrobials in the food and pharmaceutical industries.
References:
Abdollahi, S., Tofighi, Z., Babaee, T., Shamsi, M., Rahimzadeh, G., Rezvanifar, H., et al. (2020). Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa. Iranian Journal of Pharmaceutical Research, 19 (2): 115-126.
Abriouel, H., Pérez Montoro, B., Casimiro-Soriguer, C.S., Pérez Pulido, A.J., Knapp, C.W., Caballero Gómez, N., Castillo-Gutiérrez, S., Estudillo-Martínez. M.D., Gálvez, A. and Benomar, N. (2017). Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Front Microbiollogy, 8:891, 1-17.
Amiri, S., Rezazadeh-Bari, M., Alizadeh Khaledabad, M. and Amiri, S. (2019). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2): 423-432.
Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F. and Zhao, J. (2014). Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35: 65–72.
Didar, Z. 2019. The effect of biosurfactant of saccharomyces cerevisiae on biofilms produced by staphylococcus aureus, epidermidis and saprophyticus: A Laboratory Study. Journal of Rafsanjan University of Medical Sciences, 18 (5):441-454.
Giri, S. S., Ryu, E., Sukumaran, V. and Chang Park, S. 2019. Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial Pathogenesis, 113: 66- 72.
Gomaa, E. Z. (2013). Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. Journal of General and Applied Microbiology, 59: 425–436.
In`es, M. and Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 71: 100–112.
Merghni, M., Ben Nejma, I., Helali, H., Hentati, A., Bongiovanni, F., Lafont, M., Aouni, M. and Mastouri, M. (2015). Assessment of adhesion, invasion and cytotoxicity potential of oral Staphylococcus aureus strains, Microb. Pathog, 86:1–9.
Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H. and Tobji, S., (2017). Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathogenesis, 104: 84–89.
Moo-Huchin, V. M., Moo-Huchin, M. I., Estrada-León, R. J., Cuevas-Glory, L., Estrada-Mota, I.A., et al. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166, 17–22.
Morais, I. M. C., Cordeiro, A. L., Teixeira, G. S., Domingues, V. S., Nardi, R. M. D. and Monteiro, A. S., et al. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri - P 65. Microbial Cell Factories, 1–15.
Mouafo, H. T., Mbawala, A., Tanaji, K., Somashekar, D., and Ndjouenkeu, R. (2020). Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT- Food Science and Technology, 110071, 133, 1-8.
Nieva-Echevarria, M.J., Manzanos, E., Goicoechea, M.D. and Guillen, M. (2015). 2,6-di-tert-butylhydroxytoluene and its metabolites in foods. Comprehensive Reviews in Food Science and Food Safety, 14: 67–80.
Sambanthamoorthy, K., Feng, X., Patel, R., Patel, S. and Paranavitana, C. (2014). Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology, 14(1): 1-9.
Sandri, D. and Kholiq M. A. (2018). Biosurfactant producing bacteria from oil contaminated soil: Screening, identification, and process optimization. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 1(2):49-56.
Saravanakumari, P. and Mani, K. (2010). Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multidrug resistant pathogens, Bioresource Technology, 101 (22): 8851-8854.
Secato, J. F. F., dos Santos, B. F., Ponezi, A. N. and Tambourgi, E.B. (2017). Optimization Techniques and Development of Neural Models Applied in Biosurfactant Production by Bacillus subtilis Using Alternative Substrates. Advances in Bioscience and Biotechnology, 8 (10):343- 360
Sharma, B.S., Saharan, N., Chauhan, A., Bansal, S. and Procha, S. (2014). Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Scientific World Journal, 493548.
Varedesara MS, Ariaii P, Hesari J. (2021). The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Science & Nutrition, 9:2180–2190.
Soltan-Dallal, M. M. and Didar Z. (2019). Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms. Feyz, 23 (3) :261-268.
Suresh Chander, C.R., Lohitnath, T., Mukesh Kumar, D. J. and Kalaichelvan, P.T. (2012). Production and characterization of biosurfactant from bacillus subtilis MTCC441 and its evaluation to use asbioemulsifier for food bio – preservative. Advances in Applied Science Research, 3 (3):1827-1831.
Wouters, D., Grosu-Tudor, S., Zamfir, M and De Vuyst, L. (2013). Applicability of Lactobacillus plantarum IMDO 788 as a starter culture to control vegetable fermentations. Journal of the Science of Food and Agriculture, 93 (13): 3352- 61.
Yan, X., Gu, S., Cui, X., Shi, Y., Wen, S., Chen, H. and Ge, J. (2019). Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis, 127: 12–20.
Yehye, N.A., Rahman, A., Ariffin, S.B., Abd Hamid, A.A., Alhadi, F.A., et al. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. European Journal of Medicinal Chemistry, 101: 295-312.
Zhai, R., Yin, L., Yu, G., Wang, F., Tian, R., et al. (2015). Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 54: 23–30
_||_
Abdollahi, S., Tofighi, Z., Babaee, T., Shamsi, M., Rahimzadeh, G., Rezvanifar, H., et al. (2020). Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa. Iranian Journal of Pharmaceutical Research, 19 (2): 115-126.
Abriouel, H., Pérez Montoro, B., Casimiro-Soriguer, C.S., Pérez Pulido, A.J., Knapp, C.W., Caballero Gómez, N., Castillo-Gutiérrez, S., Estudillo-Martínez. M.D., Gálvez, A. and Benomar, N. (2017). Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Front Microbiollogy, 8:891, 1-17.
Amiri, S., Rezazadeh-Bari, M., Alizadeh Khaledabad, M. and Amiri, S. (2019). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2): 423-432.
Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F. and Zhao, J. (2014). Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35: 65–72.
Didar, Z. 2019. The effect of biosurfactant of saccharomyces cerevisiae on biofilms produced by staphylococcus aureus, epidermidis and saprophyticus: A Laboratory Study. Journal of Rafsanjan University of Medical Sciences, 18 (5):441-454.
Giri, S. S., Ryu, E., Sukumaran, V. and Chang Park, S. 2019. Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial Pathogenesis, 113: 66- 72.
Gomaa, E. Z. (2013). Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. Journal of General and Applied Microbiology, 59: 425–436.
In`es, M. and Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 71: 100–112.
Merghni, M., Ben Nejma, I., Helali, H., Hentati, A., Bongiovanni, F., Lafont, M., Aouni, M. and Mastouri, M. (2015). Assessment of adhesion, invasion and cytotoxicity potential of oral Staphylococcus aureus strains, Microb. Pathog, 86:1–9.
Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H. and Tobji, S., (2017). Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathogenesis, 104: 84–89.
Moo-Huchin, V. M., Moo-Huchin, M. I., Estrada-León, R. J., Cuevas-Glory, L., Estrada-Mota, I.A., et al. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166, 17–22.
Morais, I. M. C., Cordeiro, A. L., Teixeira, G. S., Domingues, V. S., Nardi, R. M. D. and Monteiro, A. S., et al. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri - P 65. Microbial Cell Factories, 1–15.
Mouafo, H. T., Mbawala, A., Tanaji, K., Somashekar, D., and Ndjouenkeu, R. (2020). Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT- Food Science and Technology, 110071, 133, 1-8.
Nieva-Echevarria, M.J., Manzanos, E., Goicoechea, M.D. and Guillen, M. (2015). 2,6-di-tert-butylhydroxytoluene and its metabolites in foods. Comprehensive Reviews in Food Science and Food Safety, 14: 67–80.
Sambanthamoorthy, K., Feng, X., Patel, R., Patel, S. and Paranavitana, C. (2014). Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology, 14(1): 1-9.
Sandri, D. and Kholiq M. A. (2018). Biosurfactant producing bacteria from oil contaminated soil: Screening, identification, and process optimization. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 1(2):49-56.
Saravanakumari, P. and Mani, K. (2010). Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multidrug resistant pathogens, Bioresource Technology, 101 (22): 8851-8854.
Secato, J. F. F., dos Santos, B. F., Ponezi, A. N. and Tambourgi, E.B. (2017). Optimization Techniques and Development of Neural Models Applied in Biosurfactant Production by Bacillus subtilis Using Alternative Substrates. Advances in Bioscience and Biotechnology, 8 (10):343- 360
Sharma, B.S., Saharan, N., Chauhan, A., Bansal, S. and Procha, S. (2014). Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Scientific World Journal, 493548.
Varedesara MS, Ariaii P, Hesari J. (2021). The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Science & Nutrition, 9:2180–2190.
Soltan-Dallal, M. M. and Didar Z. (2019). Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms. Feyz, 23 (3) :261-268.
Suresh Chander, C.R., Lohitnath, T., Mukesh Kumar, D. J. and Kalaichelvan, P.T. (2012). Production and characterization of biosurfactant from bacillus subtilis MTCC441 and its evaluation to use asbioemulsifier for food bio – preservative. Advances in Applied Science Research, 3 (3):1827-1831.
Wouters, D., Grosu-Tudor, S., Zamfir, M and De Vuyst, L. (2013). Applicability of Lactobacillus plantarum IMDO 788 as a starter culture to control vegetable fermentations. Journal of the Science of Food and Agriculture, 93 (13): 3352- 61.
Yan, X., Gu, S., Cui, X., Shi, Y., Wen, S., Chen, H. and Ge, J. (2019). Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis, 127: 12–20.
Yehye, N.A., Rahman, A., Ariffin, S.B., Abd Hamid, A.A., Alhadi, F.A., et al. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. European Journal of Medicinal Chemistry, 101: 295-312.
Zhai, R., Yin, L., Yu, G., Wang, F., Tian, R., et al. (2015). Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 54: 23–30