Atriplex halimus L. and Simultaneous Multistress Tolerance: An Appropriate Halophyte Choice for Phytoremediation of Heavy Metal-polluted Saline Soils
Subject Areas : Tension
1 - University of Birjand
Keywords: Atriplex halimus, Halophyte plant, Heavy metal pollution, Phytoremediation, Salinity,
Abstract :
There are regions around the world that are simultaneously affected by salinity and heavy metal pollution. Several methods have been introduced to purify pollutants from the environment, most of which are expensive or inefficient. In phytoremediation, different plants are used to degrade, extract, or immobilize contaminants from/in the environment. Most plants with phytoremediation capabilities cannot remove heavy metals from saline soils because they cannot survive under salinity stress and heavy metal pollution. Nevertheless, halophyte plants can be a suitable alternative for the phytoremediation of saline soils contaminated with heavy metals due to their ability to survive in saline conditions. Atriplex plant species, one of the genera of the spinach family, as halophyte plants resistant to salinity and various abiotic stresses, are suitable candidates for this purpose. From these, Atriplex Halimus, which is a perennial shrub plant, has the ability to withstand many stresses such as drought, salinity, cold, and heavy metals. This plant can tolerate high levels of metals in saline environments contaminated with heavy metals by various mechanisms, including heavy metal binding and precipitation, activating antioxidant enzymes and compounds, accumulating osmoprotectants, and using salt removal organs. This species, with these features and considerable biomass production, can be a very suitable option for remediating salty mineral areas. Nevertheless, more field experiments are needed to investigate the practical efficiency of A. halimus in removing heavy metals from saline soils.
Acosta, J. A., Abbaspour, A., Martínez, G. R., Martínez-Martínez, S., Zornoza, R., Gabarrón, M., and Faz, A. (2018). Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Chemosphere. 204: 71-78.
Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. 11-50.
Amer, N., Chami, Z. A., Bitar, L. A., Mondelli, D., & Dumontet, S. (2013). Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. International Journal of Phytoremediation. 15(5): 498-512.
Bankaji, I., Pérez-Clemente, R. M., Caçador, I., & Sleimi, N. (2019). Accumulation potential of Atriplex halimus to zinc and lead combined with NaCl: effects on physiological parameters and antioxidant enzymes activities. South African Journal of Botany. 123: 51-61.
Clemente, R., Walker, D. J., Pardo, T., Martínez-Fernández, D., & Bernal, M. P. (2012). The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. Journal of hazardous materials. 223: 63-71.
Curado, G., Rubio-Casal, A.E., Figueroa, E., Castillo, J.M. (2010). Germination and establishment of the invasive cordgrass Spartina densiflora in acidic and metal polluted sediments of the Tinto River. Marine Pollution Bulletin. 60 (10): 1842–1848.
Deilam, A., Rohani, H., Sabouri, H., & Gholam Ali Pooralmadari, E. (2019). Effect of drought stress and salinity on germination, soluble carbohydrates and proline of Atriplex halimus. Iranian Journal of Seed Sciences and Research. 6(2): 245-255.
Díaz, O., Tapia, Y., Pastene, R., Montes, S., Núñez, N., Vélez, D., & Montoro, R. (2011). Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-andean zones in Chile. Bulletin of environmental contamination and toxicology. 86: 666-669.
Ding, Z., Alharbi, S., Almaroai, Y. A., & Eissa, M. A. (2021). Improving quality of metal-contaminated soils by some halophyte and non-halophyte forage plants. Science of The Total Environment. 764: 142885.
Eissa, M. A. (2017). Phytoextraction mechanism of Cd by Atriplex lentiformis using some mobilizing agents. Ecological Engineering. 108: 220-226.
Eissa, M. A. (2019). Effect of compost and biochar on heavy metals phytostabilization by the halophytic plant old man saltbush [Atriplex nummularia Lindl]. Soil and Sediment Contamination: An International Journal. 28(2): 135-147.
Eissa, M. A., & Ahmed, E. M. (2016). Nitrogen and phosphorus fertilization for some Atriplex plants grown on metal-contaminated soils. Soil and Sediment Contamination: An International Journal. 25(4): 431-442.
Eissa, M. A., & Almaroai, Y. A. (2019). Phytoremediation capacity of some forage plants grown on a metals-contaminated soil. Soil and Sediment Contamination: An International Journal. 28(6): 569-581.
Eissa, M. A., Al-Yasi, H. M., Ghoneim, A. M., Ali, E. F., & El Shal, R. (2022). Nitrogen and compost enhanced the phytoextraction potential of cd and pb from contaminated soils by quail bush [Atriplex lentiformis (Torr.) S. Wats]. Journal of Soil Science and Plant Nutrition. 22(1): 177-185.
El-Bakatoushi, R., Alframawy, A. M., Tammam, A., Youssef, D., & El-Sadek, L. (2015). Molecular and physiological mechanisms of heavy metal tolerance in Atriplex halimus. International journal of phytoremediation. 17(9): 789-800.
Fernández, Y. T., Diaz, O., Acuña, E., Casanova, M., Salazar, O., & Masaguer, A. (2016). Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert. Environmental monitoring and assessment. 188(4): 1-11.
Glenn, E. P., Mckeon, C., Gerhart, V., Nagler, P. L., Jordan, F., & Artiola, J. (2009). Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city. Landscape and Urban Planning. 89(3-4): 57-64.
Hamzenejad Taghlidabad, R., Khodaverdiloo, H., Wenzel, W. W., & Rezapour, S. (2014). Growth and Cd accumulation of two halophytes and a non-halophyte grown in a non-saline and a saline soil with different Cd levels. Chemistry and Ecology. 30(8): 743-754.
Jordan, F. L., Robin‐Abbott, M., Maier, R. M., & Glenn, E. P. (2002). A comparison of chelator‐facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology and Chemistry: An International Journal. 21(12): 2698-2704.
Kabata-Pendias, A. (2011). Trace elements in soil and plants. 4th Edition (520 p). CRC Press NY.
Kachout, S. S., Leclerc, J. C., Mansoura, A. B., Rejeb, M. N., & Ouerghi, Z. (2009a). Effects of heavy metals on growth and bioaccumulation of the annual halophytes Atriplex hortensis and A. rosea. Journal of Applied Sciences Research. 5(7): 746-756.
Kachout, S. S., Mansoura, A. B., Leclerc, J. C., Mechergui, R., Rejeb, M. N., & Ouerghi, Z. (2009b). Effects of heavy metals on antioxidant activities of Atriplex hortensis and A. rosea. Journal of Food, Agriculture and Environment. 7(3-4): 938-945.
Kachout, S. S., Mansoura, A. B., Mechergui, R., Leclerc, J. C., Rejeb, M. N., & Ouerghi, Z. (2012). Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. Journal of the Science of Food and Agriculture. 92(2): 336-342.
Kahli, H., Sbartai, H., Cohen-Bouhacina, T., & Bourguignon, J. (2021). Characterization of cadmium accumulation and phytoextraction in three species of the genus Atriplex (canescens, halimus and nummularia) in the presence or absence of salt. Plant Physiology and Biochemistry. 166: 902-911.
Laghlimi, M., Elouadihi, N., Baghdad, B., Moussadek, R., Laghrour, M., & Bouabdli, A. (2022). Influence of compost and chemical fertilizer on multi-metal contaminated mine tailings phytostabilization by Atriplex nummularia. Ecological Engineering & Environmental Technology. 23(6): 204-215.
Lam, E. J., Cánovas, M., Gálvez, M. E., Montofré, Í. L., Keith, B. F., & Faz, Á. (2017). Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration. 182: 210-217.
Lefèvre, I., Marchal, G., Meerts, P., Corréal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany. 65(1): 142-152.
Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., & Zhou, Q. (2017). Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environmental Reviews. 25(3): 269-281.
Lin, Y. F., & Aarts, M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and molecular life sciences, 69, 3187-3206.
Lokhande, V.H., Suprasanna, P. (2012). Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, London (UK), pp 29–56.
Lotmani, B., Fatarna, L., Berkani, A., Rabier, J., Prudent, P., & Laffont-Schwob, I. (2011). Selection of Algerian populations of the Mediterranean saltbush, Atriplex halimus, tolerant to high concentrations of lead, zinc and copper for phytostabilization of heavy metal-contaminated soils. he European Journal of Plant Science and Biotechnology. 5: 20-26.
Lutts, S., & Lefèvre, I. (2015). How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?. Annals of botany. 115(3): 509-528.
Lutts, S., Lefevre, I., Delpérée, C., Kivits, S., Dechamps, C., Robledo, A., & Correal, E. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality. 33(4): 1271-1279.
Ma, D., He, Z., Bai, X., Wang, W., Zhao, P., Lin, P., & Zhou, H. (2022). Atriplex canescens, a valuable plant in soil rehabilitation and forage production. A review. Science of The Total Environment. 804: 150287.
Manousaki, E., Kadukova, J., Papadantonakis, N., Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environmental Research. 106: 326–332.
Manousaki, E., Kokkali, F., & Kalogerakis, N. (2009). Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology. 84(6): 877-883.
Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environmental Science and Pollution Research. 16(7): 844-854.
Manousaki, E., & Kalogerakis, N. (2011). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial & Engineering Chemistry Research. 50(2): 656-660.
Manousaki, E., Galanaki, K., Papadimitriou, L., & Kalogerakis, N. (2014). Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: Two contrasting ecotypes. International journal of phytoremediation. 16(7-8): 755-769.
Martínez-Fernández, D., & Walker, D. J. (2012). The effects of soil amendments on the growth of Atriplex halimus and Bituminaria bituminosa in heavy metal-contaminated soils. Water, Air, & Soil Pollution. 223(1): 63-72.
Mesnoua, M., Mateos-Naranjo, E., Barcia-Piedras, J. M., Pérez-Romero, J. A., Lotmani, B., & Redondo-Gómez, S. (2016). Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiology and Biochemistry. 106: 30-38.
Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., & Richaud, P. (2009). AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant physiology. 149(2): 894-904.
Mousavi Kouhi, S. M. (2023). Application of aquatic plants in phytoremediation of heavy metal –polluted water. The first international conference and the second national conference on modeling and new technologies in water management, Birjand, https://civilica.com/doc/1736901
Mousavi Kouhi, S. M., & Moudi, M. (2020). Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline–sodic soil. Environmental Science and Pollution Research. 27(9): 10027-10038.
Mousavi Kouhi, S. M., Lahouti, M., & Ganjeali, A. (2020). Effect of ZnO Nanoparticles application on mineral absorption in rapeseed. Journal of Plant Research (Iranian Journal of Biology). 33(2): 485-495.
Mousavi Kouhi, S. M., Lahouti, M., Ganjeali, A., & Entezari, M. H. (2015). Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water, Air, & Soil Pollution: 226, 1-11.
Mousavi Kouhi, S. M., Lahouti, M., Ganjeali, A., & Entezari, M. H. (2016). Anatomical and ultrastructural responses of Brassica napus after long-term exposure to excess zinc. Turkish Journal of Biology. 40(3): 652-660.
Mousavi Kouhi, S. M., Moudi M., Soltani Moghadam E., Sarchahi moghadam H. (2019a). The investigating of sodium accumulation in some halophytic species of Zygophyllaceae, Polygonaceae, Asteraceae and Amaranthaceae. NBR. 6 (1) :96-105.
Mousavi Kouhi, S. M., Sarafraz Ardakani, M. R., & Beykkhormizi, A. (2019b). Irrigation of Helianthus annuus with Pb-polluted water: Improvement of phytoremediation using vermicompost. Journal of Plant Process and Function. 8(31): 77-83.
Mujeeb, A., Aziz, I., Ahmed, M. Z., Shafiq, S., Fatima, S., & Alvi, S. K. (2021). Spatial and seasonal metal variation, bioaccumulation and biomonitoring potential of halophytes from littoral zones of the Karachi Coast. Science of The Total Environment. 781: 146715.
Nedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora, 204(4), 316-324.
Nedjimi, B., Guit, B., Kacimi, M. E., & Daoud, Y. (2022). Cd-Phytoextraction Potential of Atriplex nummularia Lindl. Biology Bulletin. 49(5): 466-475.
Pardo, T., Bernal, M. P., & Clemente, R. (2017). Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments. Chemosphere. 178: 556-564.
Pardo, T., Clemente, R., Epelde, L., Garbisu, C., & Bernal, M. P. (2014). Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. Journal of hazardous materials. 268: 68-76.
Pérez-Esteban, J., Escolástico, C., Ruiz-Fernández, J., Masaguer, A., & Moliner, A. (2013). Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus. Environmental and Experimental Botany. 88: 53-59.
Rabier, J., Laffont-Schwob, I., Pricop, A., Ellili, A., D’Enjoy-Weinkammerer, G., Salducci, M.D., Prudent, P., Lotmani, B., Tonetto, A. and Masotti, V. (2014). Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water, Air, & Soil Pollution. 225(7): 1-16.
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment. 764: 144164.
Sarkar, S. K. (2018). Trace metals in a tropical mangrove wetland. Springer Singapore.
Shahrokh, V., Perez, V., Zornoza, R., Acosta, J. A., Faz, A., & Martinez-Martinez, S. (2022). Soil sodium, magnesium and potassium contents contribute to metals uptake and accumulation in leaves of Atriplex halimus in tailings ponds. Journal of Environmental Chemical Engineering. 10(3): 107948.
Shang, C., Wang, L., Tian, C., & Song, J. (2020). Heavy metal tolerance and potential for remediation of heavy metal-contaminated saline soils for the euhalophyte Suaeda salsa. Plant Signaling & Behavior. 15(11): 1805902.
Sruthi, P., Shackira, A. M., & Puthur, J. T. (2017). Heavy metal detoxification mechanisms in halophytes: an overview. Wetlands ecology and management. 25: 129-148.
Stancheva, I., Geneva, M., Yonova, P., & Markovska, Y. U. (2011). Accumulation of Cd, Pb and Zn in Tribulus terrestris L. grown on industrially polluted soil and plant antioxidant response. Advances in Environmental Biology. 300-307.
Tapia, Y., Cala, V., Eymar, E., Frutos, I., Gárate, A., & Masaguer, A. (2011). Phytoextraction of cadmium by four Mediterranean shrub species. International Journal of Phytoremediation. 13(6): 567-579.
Tapia, Y., Diaz, O., Pizarro, C., Segura, R., Vines, M., Zúñiga, G., & Moreno-Jiménez, E. (2013a). Atriplex atacamensis and Atriplex halimus resist As contamination in Pre-Andean soils (northern Chile). Science of the total environment. 450: 188-196.
Tapia, Y., Eymar, E., Gárate, A., & Masaguer, A. (2013b). Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis. Environmental monitoring and assessment. 185: 4221-4229.
Van Oosten, M. J., & Maggio A. (2015). Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and experimental botany. 111: 135-146.
Vromman, D., Martínez, J. P., Kumar, M., Šlejkovec, Z., & Lutts, S. (2018). Comparative effects of arsenite (As (III)) and arsenate (As (V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis. Environmental Science and Pollution Research. 25(34): 34473-34486.
Wang, J., Chen, J., & Pan, K. (2013a). Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environmental Science and Pollution Research. 20: 1441-1449.
Wang, Y., Qiu, Q., Xin, G., Yang, Z., Zheng, J., Ye, Z., & Li, S. (2013b). Heavy metal contamination in a vulnerable mangrove swamp in South China. Environmental monitoring and assessment. 185: 5775-5787.
Wu, H., Liu, X., Zhao, J., & Yu, J. (2012). Toxicological responses in halophyte Suaeda salsa to mercury under environmentally relevant salinity. Ecotoxicology and environmental safety. 85: 64-71.