Effect of methionine deficiency on small intestinal histology in Japanese quail
Subject Areas : Veterinary Clinical PathologyAshkan Khalkhali 1 , somayeh hamedi 2 , mohammadreza paryani 3
1 - D.V.M. Student, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 - Assistant Professor, Department of Basic Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran.
3 - Associated Professor, Department of Basic Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran.
Keywords: Japanese quail, Histology, Small intestine, Methionine deficiency,
Abstract :
Background and purpose: Japanese quail (Coturnix japonica) is a small size bird with big economical profits. This species is a good "dual-purpose" bird and is now reared for the meat and egg production. Quails have relatively early maturity and may be used as an experimental model due to their fast development, small size, etc. Moreover, because of high mortality due to emergence of new and reemergence of existing diseases in chickens, quails are being reared as they are more resistant to common poultry diseases. Methionine (Met) is a sulfur-containing amino acid with the biological functions including involvement in synthesis of eukaryotic proteins, defense against oxidative stress, methylation reactions and so on. Met also has a role in avian immune function and the nutrient digestibility in the intestine. Changes in small intestine morphology can alter absorption rate, weight gain and performance of the animal because of its important role in digestive tract for absorption. From the other point of view, alteration in the ingredients of diet may lead to a change in the intestinal mucosa and subsequently alteration in poultry performance. Thus, the aims of this study were to investigate the effect of Met deficiency on the development of the small intestine (duodenum, jejunum and ileum) and the goblet cell population in Japanese quails.Materials and methods: To evaluate the Met deficiency as a vital amino acid on histology of small intestine of Japanese quail, 20 male one-day old quails were randomly allocated into 2 groups of 10 birds. One group received Met deficient diet while another group of birds were kept as control with standard diet for 6 weeks. At the end of the experiment, all animals sacrificed by cervical dislocation. Whole length small intestine was removed immediately and immersed in 10% buffered formalin. After fixation, 1cm-thick samples were taken from the middle parts of duodenum (from the gizzard to pancreatic and bile duct), jejunum (from the bile duct to Meckel’s diverticulum) and ileum (from the Meckel’s diverticulum to ileo-cecal-colonic junction). After routine histological laboratory methods, 6μm-thick transverse cross-sections were made, a total number of 10 sections used from each intestinal segment of each bird; sections stained with Haematoxylin and Eosin and Periodic acid-Schiff. For measuring length and width of villi, depth of crypts and goblet cells number Axio vixion Rel 4.8 software were used. Data were expressed as Mean±SD. Data analysis was performed by Independent-Samples T Test method and differences considered statistically significant at p < /p>
- Adeniji, A.O., Ologhobo, A.D., Adebiyi, O.A. and Adejumo, I.O. (2015). Effect of methionine and organic acid on apparent nutrient utilization and gut morphology of broiler chicken. Advance Resource, 4(2): 87-93.
- Bahadoran, Sh., Babaahmadi Milani, M., Hassanpour, H. and Fallah Mehrjerdi, A.A. (2019). Effect of Clove (Syzygium aromaticum) essential oil and vitaminC on growth performance, intestinal villi morphology and immune response to Newcastle live vaccine following in water administration of Cadmium in Japanese quail. Veterinary Clinical Pathology, 13(50): 133-149.
- Caspary, W.F. (1992). Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition, 55(1): 299-308.
- Corfield, A.P., Carroll, D., Myerscough, N. and Probert, C.S. (2001). Mucins in the gastrointestinal tract in health and disease. Frontiers in Bioscience, 1(6): 1321-1357.
- Deng, K., Wong, C.W. and Nolan, J.V. (2007). Carry-over effects of early-life supplementary methionine on lymphoid organs and immune responses in egg-laying strain chickens. Animal Feed Science Technology, 134: 66-76.
- Dunsford, B.R., Haensly, W.E. and Knabe, D.A. (1991). Effects of diet on acidic and neutral goblet cell populations in the small intestine of early weaned pigs. American Journal of Veterinary Research, 52: 1743-1746.
- Hamedi, S., Shomali, T., Validad, Y. and Farzaneh, M. (2014). Effect of dietary Nigella sativa seeds on the small intestinal mucosa of broiler chickens. Online Journal of Veterinary Research, 18(2): 116-123.
- Havenstein, G.B., Ferket, P.R. and Qureshi, M.A. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82(10): 1500-1508.
- Hecht, G.A. (2003). Microbial pathogenesis and the intestinal epithelial cell. USA: Washington: ASM American Society for Microbiology, Washington DC, pp: 61-72.
- Hou, Y.Q., Wang, L., Ding, B., Liu, Y., Zhu, H., Liu, J., et al. (2010). Dietary a-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids, 39(2): 555-564.
- Jeurissen, S.H., Lewis, F., Van der Klis, J.D., Mroz, Z., Rebel, J.M. and Ter Huurne, A.A. (2002). Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Current Issues in Intestinal Microbiology, 3(1): 1-14.
- Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R.U. and Tufarelli, V. (2012). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science, 91(1): 265-70.
- National Research Council (1994). Nutrient Requirements of Poultry, 9th ed., USA: National Academy Press, Washington. D.C., pp: 96-155.
- Oguzet, I., Altan, O., Kirkpinar, F. and Settar, P. (1996). Body weights, carcass characteristics, organ weights, abdominal fat, and lipid content of liver and carcass in two lines of Japanese quail (Coturnix coturnix japonica), unselected and selected for four-week body weight. British Poultry Science, 37(3): 579-588.
- Ostazewska, T., Dabrowski, K., Palacios, M.E., Olejniczak, M. and Wieczorek, M. (2005). Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture, 245(1-4): 273-286.
- Parvin, R., Mandal, A.B., Singh, S.M. and Thakur, R. (2010). Effect of dietary level of methionine on growth performance and immune response in Japanese quails (Coturnix coturnix japonica). Journal Science Food Agriculture, 90(3): 471-481
- Pluske, J.R., Hampson, D.J. and Williams, I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig – a review. Livestock Production Science, 51(1-3): 215-236.
- Rostamzade, E., Asadi Fozi, M., Esmailizadeh, A.K. and Asadi, M.H. (2016). Effect of methionine restriction on IGF-1 gene expression in breast muscle of Japanese quail. Agricultural Biotechnology Journal, 8(1): 48-60. [in Persian]
- Rubin, L.L., Canal, C.W., Ribeiro, A.L.M., Kessler, A., Silva, I., Trevizan, L., et al. (2007). Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. British Journal of Poultry Science, 9(4): 241-247
- Sekiz, S.S., Scott, M.L. and Nesheim, M.C. (1975). The effect of methionine deficiency on body weight, food and energy utilization in the chick. Poultry Science. 54(4): 1184-1188.
- Smirnov, A., Sklan, D. and Uni, Z. (2004). Mucin dynamics in the chick small intestine are altered by starvation. Journal of Nutrition, 134(4): 736-742.
- Swain, B.K. and Johri, T.S. (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. British Poultry Science, 41(1): 83-88.
- Tufarelli, V., Desantis, S., Zizza, S. and Laudadio, V. (2010). Performance, gut morphology, and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets. Archives of Animal Nutrition, 64(5): 373-382.
- Van Nevel, C.J., Decuypere, J.A., Dieric, N.A. and Moll, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets: Effect on bacteriological and some morphological characteristics of the small intestine. Archives of Animal Nutrition, 59(2): 123-138.
- VanLeeuwen, P., Mouven, J.M.V.M., VanderKlis, J.D. and Verstegen, M.W.A. (2004). Morphology of the small intestinal mucosal surface of broiler in relation to age, diet formulation, small intestinal microflora and performance. British Poultry Science, 45(1): 41-48.
- Wu, G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45(3): 407-411.
- Zhong, H., Li, H., Liu, G., Wan, H., Mercier, Y., Zhang, X., et al. (2016). Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. Journal of Animal Science and Biotechnology, 5(7): 46-60.
- Zitnan, R., Kuhla, S., Nurnberg, K., Schonhusen, U., Ceresnakova, Z., Sommer, A., et al. (2003). Influence of the diet on the morphology of ruminal and intestinal mucosa and on intestinal carbohydrase levels in cattle. Veterinary Medicine, 48(7): 177-182.
- Adeniji, A.O., Ologhobo, A.D., Adebiyi, O.A. and Adejumo, I.O. (2015). Effect of methionine and organic acid on apparent nutrient utilization and gut morphology of broiler chicken. Advance Resource, 4(2): 87-93.
- Bahadoran, Sh., Babaahmadi Milani, M., Hassanpour, H. and Fallah Mehrjerdi, A.A. (2019). Effect of Clove (Syzygium aromaticum) essential oil and vitaminC on growth performance, intestinal villi morphology and immune response to Newcastle live vaccine following in water administration of Cadmium in Japanese quail. Veterinary Clinical Pathology, 13(50): 133-149.
- Caspary, W.F. (1992). Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition, 55(1): 299-308.
- Corfield, A.P., Carroll, D., Myerscough, N. and Probert, C.S. (2001). Mucins in the gastrointestinal tract in health and disease. Frontiers in Bioscience, 1(6): 1321-1357.
- Deng, K., Wong, C.W. and Nolan, J.V. (2007). Carry-over effects of early-life supplementary methionine on lymphoid organs and immune responses in egg-laying strain chickens. Animal Feed Science Technology, 134: 66-76.
- Dunsford, B.R., Haensly, W.E. and Knabe, D.A. (1991). Effects of diet on acidic and neutral goblet cell populations in the small intestine of early weaned pigs. American Journal of Veterinary Research, 52: 1743-1746.
- Hamedi, S., Shomali, T., Validad, Y. and Farzaneh, M. (2014). Effect of dietary Nigella sativa seeds on the small intestinal mucosa of broiler chickens. Online Journal of Veterinary Research, 18(2): 116-123.
- Havenstein, G.B., Ferket, P.R. and Qureshi, M.A. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82(10): 1500-1508.
- Hecht, G.A. (2003). Microbial pathogenesis and the intestinal epithelial cell. USA: Washington: ASM American Society for Microbiology, Washington DC, pp: 61-72.
- Hou, Y.Q., Wang, L., Ding, B., Liu, Y., Zhu, H., Liu, J., et al. (2010). Dietary a-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids, 39(2): 555-564.
- Jeurissen, S.H., Lewis, F., Van der Klis, J.D., Mroz, Z., Rebel, J.M. and Ter Huurne, A.A. (2002). Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Current Issues in Intestinal Microbiology, 3(1): 1-14.
- Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R.U. and Tufarelli, V. (2012). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science, 91(1): 265-70.
- National Research Council (1994). Nutrient Requirements of Poultry, 9th ed., USA: National Academy Press, Washington. D.C., pp: 96-155.
- Oguzet, I., Altan, O., Kirkpinar, F. and Settar, P. (1996). Body weights, carcass characteristics, organ weights, abdominal fat, and lipid content of liver and carcass in two lines of Japanese quail (Coturnix coturnix japonica), unselected and selected for four-week body weight. British Poultry Science, 37(3): 579-588.
- Ostazewska, T., Dabrowski, K., Palacios, M.E., Olejniczak, M. and Wieczorek, M. (2005). Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture, 245(1-4): 273-286.
- Parvin, R., Mandal, A.B., Singh, S.M. and Thakur, R. (2010). Effect of dietary level of methionine on growth performance and immune response in Japanese quails (Coturnix coturnix japonica). Journal Science Food Agriculture, 90(3): 471-481
- Pluske, J.R., Hampson, D.J. and Williams, I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig – a review. Livestock Production Science, 51(1-3): 215-236.
- Rostamzade, E., Asadi Fozi, M., Esmailizadeh, A.K. and Asadi, M.H. (2016). Effect of methionine restriction on IGF-1 gene expression in breast muscle of Japanese quail. Agricultural Biotechnology Journal, 8(1): 48-60. [in Persian]
- Rubin, L.L., Canal, C.W., Ribeiro, A.L.M., Kessler, A., Silva, I., Trevizan, L., et al. (2007). Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. British Journal of Poultry Science, 9(4): 241-247
- Sekiz, S.S., Scott, M.L. and Nesheim, M.C. (1975). The effect of methionine deficiency on body weight, food and energy utilization in the chick. Poultry Science. 54(4): 1184-1188.
- Smirnov, A., Sklan, D. and Uni, Z. (2004). Mucin dynamics in the chick small intestine are altered by starvation. Journal of Nutrition, 134(4): 736-742.
- Swain, B.K. and Johri, T.S. (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. British Poultry Science, 41(1): 83-88.
- Tufarelli, V., Desantis, S., Zizza, S. and Laudadio, V. (2010). Performance, gut morphology, and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets. Archives of Animal Nutrition, 64(5): 373-382.
- Van Nevel, C.J., Decuypere, J.A., Dieric, N.A. and Moll, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets: Effect on bacteriological and some morphological characteristics of the small intestine. Archives of Animal Nutrition, 59(2): 123-138.
- VanLeeuwen, P., Mouven, J.M.V.M., VanderKlis, J.D. and Verstegen, M.W.A. (2004). Morphology of the small intestinal mucosal surface of broiler in relation to age, diet formulation, small intestinal microflora and performance. British Poultry Science, 45(1): 41-48.
- Wu, G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45(3): 407-411.
- Zhong, H., Li, H., Liu, G., Wan, H., Mercier, Y., Zhang, X., et al. (2016). Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. Journal of Animal Science and Biotechnology, 5(7): 46-60.
- Zitnan, R., Kuhla, S., Nurnberg, K., Schonhusen, U., Ceresnakova, Z., Sommer, A., et al. (2003). Influence of the diet on the morphology of ruminal and intestinal mucosa and on intestinal carbohydrase levels in cattle. Veterinary Medicine, 48(7): 177-182.