تاثیر کمبود متیونین جیره بر بافتشناسی روده باریک بلدرچین ژاپنی
الموضوعات :اشکان خلخالی 1 , سمیه حامدی 2 , محمدرضا پریانی 3
1 - دانشجوی دکترای حرفهای، رشته دامپزشکی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.
2 - استادیار گروه علوم پایه ، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.
3 - دانشیار گروه علوم پایه ، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.
الکلمات المفتاحية: بلدرچین ژاپنی, روده باریک, بافتشناسی, کمبود متیونین,
ملخص المقالة :
به منظور مطالعه تاثیرکمبود متیونین جیرهبه عنوان یک اسیدآمینه حیاتی بر بافت روده باریک،تعداد 20 قطعه بلدرچین ژاپنی نر یکروزه به صورت تصادفی به 2 گروه 10تایی تقسیم شدند. بلدرچینهای گروه آزمایشیباجیره فاقد مکمل متیونین و گروه شاهد با جیره استاندارد بلدرچین به مدت 6 هفته تغذیه شدند.پس از پایان دوره و کشتار بلدرچینهانمونههای بافتشناسی ازقسمت میانیدوازدهه، تهی روده و ایلئوم تهیه و مراحل معمول بافتشناسی انجام پذیرفت. سپسبرش های 6 میکرونی تهیه شده،تحت رنگ آمیزی هماتوکسیلین-ائوزین و روش هیستوشیمی پریودیک اسید چیف قرار گرفتند. با استفاده از نرم افزارAxio vixion Rel 4.8ارتفاع و عرض کرک، عمق کریپت، نسبت ارتفاع کرک به عمق کریپت و تعداد سلول های جامی در واحد سطح اندازهگیری و دادهها به صورت میانگین±انحراف معیار ارائه شده و با روش آماریIndependent-Samples t-Testو در سطح معنی p < 0/05 ;از لحاظ آماری مورد مقایسه قرار گرفتند. کاهش متیونین جیره سبب کاهش معنیدار عرض کرک و تعداد سلولهای جامی در هر سه قسمت روده باریک و نیز کاهش معنیدار ارتفاع کرک و نسبت ارتفاع کرک به عمق کریپت در تهیروده شد. باتوجه به این که کاهش نسبت ارتفاع کرک به عمق کریپت سبب کاهش سطح جذب در روده میشود،مشخص گردید که کاهش متیونین جیره با اثر منفی بر سلول های جامی و کاهش ترشحات مخاطی سبب آسیب به مخاط روده باریک و همچنین کاهش سطح هضم و جذب روده ای و در نهایت کاهش وزن بلدرچین میشود.
- Adeniji, A.O., Ologhobo, A.D., Adebiyi, O.A. and Adejumo, I.O. (2015). Effect of methionine and organic acid on apparent nutrient utilization and gut morphology of broiler chicken. Advance Resource, 4(2): 87-93.
- Bahadoran, Sh., Babaahmadi Milani, M., Hassanpour, H. and Fallah Mehrjerdi, A.A. (2019). Effect of Clove (Syzygium aromaticum) essential oil and vitaminC on growth performance, intestinal villi morphology and immune response to Newcastle live vaccine following in water administration of Cadmium in Japanese quail. Veterinary Clinical Pathology, 13(50): 133-149.
- Caspary, W.F. (1992). Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition, 55(1): 299-308.
- Corfield, A.P., Carroll, D., Myerscough, N. and Probert, C.S. (2001). Mucins in the gastrointestinal tract in health and disease. Frontiers in Bioscience, 1(6): 1321-1357.
- Deng, K., Wong, C.W. and Nolan, J.V. (2007). Carry-over effects of early-life supplementary methionine on lymphoid organs and immune responses in egg-laying strain chickens. Animal Feed Science Technology, 134: 66-76.
- Dunsford, B.R., Haensly, W.E. and Knabe, D.A. (1991). Effects of diet on acidic and neutral goblet cell populations in the small intestine of early weaned pigs. American Journal of Veterinary Research, 52: 1743-1746.
- Hamedi, S., Shomali, T., Validad, Y. and Farzaneh, M. (2014). Effect of dietary Nigella sativa seeds on the small intestinal mucosa of broiler chickens. Online Journal of Veterinary Research, 18(2): 116-123.
- Havenstein, G.B., Ferket, P.R. and Qureshi, M.A. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82(10): 1500-1508.
- Hecht, G.A. (2003). Microbial pathogenesis and the intestinal epithelial cell. USA: Washington: ASM American Society for Microbiology, Washington DC, pp: 61-72.
- Hou, Y.Q., Wang, L., Ding, B., Liu, Y., Zhu, H., Liu, J., et al. (2010). Dietary a-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids, 39(2): 555-564.
- Jeurissen, S.H., Lewis, F., Van der Klis, J.D., Mroz, Z., Rebel, J.M. and Ter Huurne, A.A. (2002). Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Current Issues in Intestinal Microbiology, 3(1): 1-14.
- Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R.U. and Tufarelli, V. (2012). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science, 91(1): 265-70.
- National Research Council (1994). Nutrient Requirements of Poultry, 9th ed., USA: National Academy Press, Washington. D.C., pp: 96-155.
- Oguzet, I., Altan, O., Kirkpinar, F. and Settar, P. (1996). Body weights, carcass characteristics, organ weights, abdominal fat, and lipid content of liver and carcass in two lines of Japanese quail (Coturnix coturnix japonica), unselected and selected for four-week body weight. British Poultry Science, 37(3): 579-588.
- Ostazewska, T., Dabrowski, K., Palacios, M.E., Olejniczak, M. and Wieczorek, M. (2005). Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture, 245(1-4): 273-286.
- Parvin, R., Mandal, A.B., Singh, S.M. and Thakur, R. (2010). Effect of dietary level of methionine on growth performance and immune response in Japanese quails (Coturnix coturnix japonica). Journal Science Food Agriculture, 90(3): 471-481
- Pluske, J.R., Hampson, D.J. and Williams, I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig – a review. Livestock Production Science, 51(1-3): 215-236.
- Rostamzade, E., Asadi Fozi, M., Esmailizadeh, A.K. and Asadi, M.H. (2016). Effect of methionine restriction on IGF-1 gene expression in breast muscle of Japanese quail. Agricultural Biotechnology Journal, 8(1): 48-60. [in Persian]
- Rubin, L.L., Canal, C.W., Ribeiro, A.L.M., Kessler, A., Silva, I., Trevizan, L., et al. (2007). Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. British Journal of Poultry Science, 9(4): 241-247
- Sekiz, S.S., Scott, M.L. and Nesheim, M.C. (1975). The effect of methionine deficiency on body weight, food and energy utilization in the chick. Poultry Science. 54(4): 1184-1188.
- Smirnov, A., Sklan, D. and Uni, Z. (2004). Mucin dynamics in the chick small intestine are altered by starvation. Journal of Nutrition, 134(4): 736-742.
- Swain, B.K. and Johri, T.S. (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. British Poultry Science, 41(1): 83-88.
- Tufarelli, V., Desantis, S., Zizza, S. and Laudadio, V. (2010). Performance, gut morphology, and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets. Archives of Animal Nutrition, 64(5): 373-382.
- Van Nevel, C.J., Decuypere, J.A., Dieric, N.A. and Moll, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets: Effect on bacteriological and some morphological characteristics of the small intestine. Archives of Animal Nutrition, 59(2): 123-138.
- VanLeeuwen, P., Mouven, J.M.V.M., VanderKlis, J.D. and Verstegen, M.W.A. (2004). Morphology of the small intestinal mucosal surface of broiler in relation to age, diet formulation, small intestinal microflora and performance. British Poultry Science, 45(1): 41-48.
- Wu, G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45(3): 407-411.
- Zhong, H., Li, H., Liu, G., Wan, H., Mercier, Y., Zhang, X., et al. (2016). Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. Journal of Animal Science and Biotechnology, 5(7): 46-60.
- Zitnan, R., Kuhla, S., Nurnberg, K., Schonhusen, U., Ceresnakova, Z., Sommer, A., et al. (2003). Influence of the diet on the morphology of ruminal and intestinal mucosa and on intestinal carbohydrase levels in cattle. Veterinary Medicine, 48(7): 177-182.
- Adeniji, A.O., Ologhobo, A.D., Adebiyi, O.A. and Adejumo, I.O. (2015). Effect of methionine and organic acid on apparent nutrient utilization and gut morphology of broiler chicken. Advance Resource, 4(2): 87-93.
- Bahadoran, Sh., Babaahmadi Milani, M., Hassanpour, H. and Fallah Mehrjerdi, A.A. (2019). Effect of Clove (Syzygium aromaticum) essential oil and vitaminC on growth performance, intestinal villi morphology and immune response to Newcastle live vaccine following in water administration of Cadmium in Japanese quail. Veterinary Clinical Pathology, 13(50): 133-149.
- Caspary, W.F. (1992). Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition, 55(1): 299-308.
- Corfield, A.P., Carroll, D., Myerscough, N. and Probert, C.S. (2001). Mucins in the gastrointestinal tract in health and disease. Frontiers in Bioscience, 1(6): 1321-1357.
- Deng, K., Wong, C.W. and Nolan, J.V. (2007). Carry-over effects of early-life supplementary methionine on lymphoid organs and immune responses in egg-laying strain chickens. Animal Feed Science Technology, 134: 66-76.
- Dunsford, B.R., Haensly, W.E. and Knabe, D.A. (1991). Effects of diet on acidic and neutral goblet cell populations in the small intestine of early weaned pigs. American Journal of Veterinary Research, 52: 1743-1746.
- Hamedi, S., Shomali, T., Validad, Y. and Farzaneh, M. (2014). Effect of dietary Nigella sativa seeds on the small intestinal mucosa of broiler chickens. Online Journal of Veterinary Research, 18(2): 116-123.
- Havenstein, G.B., Ferket, P.R. and Qureshi, M.A. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82(10): 1500-1508.
- Hecht, G.A. (2003). Microbial pathogenesis and the intestinal epithelial cell. USA: Washington: ASM American Society for Microbiology, Washington DC, pp: 61-72.
- Hou, Y.Q., Wang, L., Ding, B., Liu, Y., Zhu, H., Liu, J., et al. (2010). Dietary a-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids, 39(2): 555-564.
- Jeurissen, S.H., Lewis, F., Van der Klis, J.D., Mroz, Z., Rebel, J.M. and Ter Huurne, A.A. (2002). Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Current Issues in Intestinal Microbiology, 3(1): 1-14.
- Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R.U. and Tufarelli, V. (2012). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science, 91(1): 265-70.
- National Research Council (1994). Nutrient Requirements of Poultry, 9th ed., USA: National Academy Press, Washington. D.C., pp: 96-155.
- Oguzet, I., Altan, O., Kirkpinar, F. and Settar, P. (1996). Body weights, carcass characteristics, organ weights, abdominal fat, and lipid content of liver and carcass in two lines of Japanese quail (Coturnix coturnix japonica), unselected and selected for four-week body weight. British Poultry Science, 37(3): 579-588.
- Ostazewska, T., Dabrowski, K., Palacios, M.E., Olejniczak, M. and Wieczorek, M. (2005). Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture, 245(1-4): 273-286.
- Parvin, R., Mandal, A.B., Singh, S.M. and Thakur, R. (2010). Effect of dietary level of methionine on growth performance and immune response in Japanese quails (Coturnix coturnix japonica). Journal Science Food Agriculture, 90(3): 471-481
- Pluske, J.R., Hampson, D.J. and Williams, I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig – a review. Livestock Production Science, 51(1-3): 215-236.
- Rostamzade, E., Asadi Fozi, M., Esmailizadeh, A.K. and Asadi, M.H. (2016). Effect of methionine restriction on IGF-1 gene expression in breast muscle of Japanese quail. Agricultural Biotechnology Journal, 8(1): 48-60. [in Persian]
- Rubin, L.L., Canal, C.W., Ribeiro, A.L.M., Kessler, A., Silva, I., Trevizan, L., et al. (2007). Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. British Journal of Poultry Science, 9(4): 241-247
- Sekiz, S.S., Scott, M.L. and Nesheim, M.C. (1975). The effect of methionine deficiency on body weight, food and energy utilization in the chick. Poultry Science. 54(4): 1184-1188.
- Smirnov, A., Sklan, D. and Uni, Z. (2004). Mucin dynamics in the chick small intestine are altered by starvation. Journal of Nutrition, 134(4): 736-742.
- Swain, B.K. and Johri, T.S. (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. British Poultry Science, 41(1): 83-88.
- Tufarelli, V., Desantis, S., Zizza, S. and Laudadio, V. (2010). Performance, gut morphology, and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets. Archives of Animal Nutrition, 64(5): 373-382.
- Van Nevel, C.J., Decuypere, J.A., Dieric, N.A. and Moll, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets: Effect on bacteriological and some morphological characteristics of the small intestine. Archives of Animal Nutrition, 59(2): 123-138.
- VanLeeuwen, P., Mouven, J.M.V.M., VanderKlis, J.D. and Verstegen, M.W.A. (2004). Morphology of the small intestinal mucosal surface of broiler in relation to age, diet formulation, small intestinal microflora and performance. British Poultry Science, 45(1): 41-48.
- Wu, G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45(3): 407-411.
- Zhong, H., Li, H., Liu, G., Wan, H., Mercier, Y., Zhang, X., et al. (2016). Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. Journal of Animal Science and Biotechnology, 5(7): 46-60.
- Zitnan, R., Kuhla, S., Nurnberg, K., Schonhusen, U., Ceresnakova, Z., Sommer, A., et al. (2003). Influence of the diet on the morphology of ruminal and intestinal mucosa and on intestinal carbohydrase levels in cattle. Veterinary Medicine, 48(7): 177-182.