Modeling at the nanometric scale of interfacial defects of a semiconductor heterostructure in the isotropic and anisotropic cases for the study of the influence of stresses.
Subject Areas : Mechanics of SolidsAhmed Boussaha 1 , Rafik Makhloufi 2 , Rachid Benbouta 3 , Mourad Brioua 4
1 -
2 - Mechanical Engineering Department, University of Batna2, Algeria
3 -
4 -
Keywords: Interface, GaAs/Si, Isotropic elasticity, Anisotropic elasticity, Elastic fields,
Abstract :
This work aims to determine the effect of stresses caused by dislocation networks placed at the interface of a semiconductor heterostructure of the thin GaAs / Si system. In this case, we use a mathematical modeling by Fourier series expansion to numerically simulate the stresses for the two cases of isotropic and anisotropic elasticity in order to predict the mechanical behavior of the heterostructure in the presence of interfacial dislocations while respecting well-defined stress boundary conditions. After establishing the hypotheses of the chosen model, which is a thin bimetallic strip, representing the GaAs / Si semiconductor heterostructure, and the boundary conditions relating to the problem posed, we obtained results of the stress distribution around a dislocation showing that the deformation is greater near the core of the dislocation. The elastic stress relaxation is reached for a layer thickness threshold of the GaAs deposit on the Si substrate not exceeding 5 nm.
[1] Fang S.F., Adomi K., Iyer S., Morkoc H., Zabel H., Choi C., Otsuka N., 1990, Gallium arsenide and other compound semiconductors on silicon, Journal of Applied Physics, 68(7): 31-58.
[2] Nakajima K., 1992, Calculation of stresses in GaAs/Si strained heterostructures. Journal of crystal growth, 121(3): 278-296.
[3] Mao E.W., Zhao W.Q., Zhang H.R., Li A.Z., Chen J.M., Fang G.P., 1988, The influence of strain and dislocations on transport properties of GaAs/Si strained-layer heterojunctions. Phys. Stat. Sol. (a), 110(2): 515-520.
[4] Ünlü H., 2022, Strain in Microscale and Nanoscale Semiconductor Heterostructures, Progress in Nanoscale and Low-Dimensional Materials and Devices, 144: 65-115.
[5] Makhloufi R., Boussaha A., Benbouta R., Baroura L. 2021, Anisotropic and isotropic elasticity applied for the study of elastic fields generated by interfacial dislocations in a heterostructure of InAs/(001)GaAs semiconductors. Journal of Solid Mechanics, 13(4): 503-512.
[6] Boussaha A., Makhloufi R., Madani S., 2019, Displacement Fields Influence Analysis caused by dislocation networks at a three layer system interfaces on the surface topology. Journal of Solid Mechanics, 11(3): 606-614.
[7] Vincent T., 2019, Nanomécanique des champs de défauts cristallins. Mécanique des matériaux [physics.class-ph]. Université de Lorraine; Ecole Doctorale C2MP.
[8] Gutkin M.Y., Romanov A.E., 1991, Straight Edge Dislocation in a Thin Two-Phase Plate I. Elastic Stress Fields, Physica Status Solidi (a), 125(1): 107-125.
[9] Bonnet R., Verger-Gaugry J.L., 1992, Couche épitaxique mince sur un substrat semi-infini: Rôle du désaccord paramétrique et de l'épaisseur sur les distortions élastiques, Philosophical Magazine A, 66(5): 849-871.
[10] Kim, Y., Madarang, M. A., Ju, E., Laryn, T., Chu, R. J., Kim, T. S., & Jung, D. (2023). GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer. Energies, 16(3), 1158.
[11] Lovergine, N., Miccoli, I., Tapfer, L., &Prete, P. (2023). GaAs hetero-epitaxial layers grown by MOVPE on exactly-oriented and off-cut (111) Si: Lattice tilt, mosaicity and defects content. Applied Surface Science, 634 : 157627.
[12] Bonnet, R., & Morton, A. J. (1987). Contraste en MET à deux ondes d'une dislocation rectiligne parallèle à la surface libre d'un cristal anisotrope. Philosophical Magazine A, 56(6), 815-830.
[13] Nye, J. F. (1985). Physical properties of crystals. Oxford: Clarendon Press.