
.                  
Copyright: © 2024 by the authors. Submitted for 
possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/).

                                                                                 

Journal of Solid Mechanics Vol. 16, No. 1 (2024) pp. 65-73
DOI: 10.60664/jsm.2024.3031774

Research Paper

Modeling at The Nanometric Scale of Interfacial 
Defects of A Semiconductor Heterostructure in The 
Isotropic And Anisotropic Cases For The Study of The 
Influence of Stresses

A. Boussaha, R. Makhloufi, R. Benbouta * , M. Brioua

Mechanical Engineering Department, Faculty of Technology, University of Batna 2 Mostafa Ben 
Boulaid, Batna, Algeiria

Received 26 March 2023; Received in revised form 29 April 2024; Accepted 24 May 2024

ABSTRACT

This work aims to determine the effect of stresses caused by 
dislocation networks placed at the interface of a semiconductor 
heterostructure of the thin GaAs/Si system. In this case, we use a 
mathematical modeling by Fourier series expansion to numerically 
simulate the stresses for the two cases of isotropic and anisotropic 
elasticity in order to predict the mechanical behavior of the 
heterostructure in the presence of interfacial dislocations while 
respecting well-defined stress boundary conditions. The elastic 
stress relaxation is reached for a layer thickness threshold of the 
GaAs deposit on the Si substrate not exceeding 5 nm.
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1    INTRODUCTION

HE evaluation of elastic fields generated by dislocation networks in semiconductor heterostructures has become 
essential. To design and manufacture better semiconductors, the electronics industry uses heterostructures with 

greater reliability in their various properties. Among the heterostructures which have been the object of study of the 
mechanical behavior of thin films of nanometric thickness deposited on a substrate to solve the problems of the 
constraints observed in the manufacture of components used in microelectronics, mention may be made of 
semiconductor heterostructures GaAs/Si and InAs/GaAs which are very interesting in research for their physical and 
optoelectronic properties [1].

Nakajima [2] calculated for the GaAs/Si heterostructure by proposing a theoretical model while considering that 
the interface is coherent between the thin layers.
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Mao et al. [3] treated the effect of dislocations on the deformation of GaAs/Si samples by varying the thickness 
deposited by means of Raman scattering and hall measurement at different temperatures.

Ü nlü [4] to model semiconductor heterostructures at the microscopic and nanometric scale to assess the effect of 
deformation on electronic and optical properties using GaAs/Si (001) as a model.

Makhloufi et al. [5] studied the possibility of epitaxy of thin layers of InAs on GaAs.
Boussaha et al. [6] determined the fields of the displacements as well as the iso values for an anisotropic three-

layer CdTe/GaAs/GaAs(001) material under the effect of two dislocation networks placed at the interfaces.
Vincent [7] presented a development of theoretical models and numerical methods for the study at the 

nanometric scale of plastic deformation assisted by dislocations and by grain boundary type interfaces.
An isotropic domain calculation of the stress fields, for which analytical expressions have already been proposed 

by Gutkin and al. [8] for the case of the InAs / (001) GaAs system.
Our study is reserved for the GaAs/Si heterostructure in order to determine the effect of tensile and compressive 

stresses on its mechanical behavior.
Kim et al. [10] considered in their study the potential effect for GaAs/Si tandem cells showed a 1.28 V open 

circuit voltage.
Lovegine et al. [11] studied the integration of III.V GaAs semiconductors on Si for the fabrication of tandem 

solar cells obtained by the ether oepitaxy mode of GaAS on Si.
The integration of GaAs on Si without defects is one of the challenges for researchers in order to have an 

association with a very good quality interface unlike the interface of the InAs/GaAs system [5] and to combine the 
many advantages of Si, with the high mobility and direct gap properties of GaAs, to increase the speed of 
processors, to add new optical functionalities in microsystems, but also to produce photovoltaic cells with high 
efficiency and low cost.

2    GEOMETRY OF PROBLEM  

The geometry of the problem represented in figure 1 below, shows the unidirectional network of dislocations 
generated between the layers of the GaAs/Si heterostructure.

Fig. 1

Geometry of the thin GaAs/Si bicrystal: 1/g is the period. The crystal stiffness’s are ijklC  and ijklC , with thicknesses h+ and h-.

In the isotropic case, the classical differential equation of elasticity is written [9]:
                                                                                                                                       (1)

λ and μ are the Lamé coefficients of the deformed medium.
The deformation is assumed to be plane and periodic along the Ox1 axis. The expression of the stress field in the 

case of plane strain is:

                                                                                                                         (2)
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After elimination of the parameter λ, using the classical relation (Hirth and Loth):

                                                                                                                                        (3)

With the Poisson's ratio υ.
The stress equations necessary for the calculations are:

                                                                                                                                                 (4)

                                                                                                          (5)

                                                                                                                                                (6)

In the anisotropic case we must switch from the starting system to the working system by the passage 
matrix :

Fig. 2

Diagram of the two starting and working markers.

aij  is the matrix which allows the transition from the starting frame to the working frame.
The matrix of the elastic constants Cij for an anisotropic material having 36 elements in the reference of the 

crystal is written:

The matrix Cij is symmetric; therefore, the linear behavior of a material is then described in the general case by 
21 independent coefficients.

After transformation, one obtains the matrix of the elastic constants in the work reference:

                                                                                                                                                     (7)

"T" is a (6x6) matrix obtained after transformation of the passage matrix aij
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And:

3    EXPRESSION OF STRESSES AND BOUNDARY CONDITIONS  

The mathematical formulation that deals with the anisotropic case is different from the isotropic case, we must 
consider that the two media are supposed to obey the general Hooke's law:

                                                                       (8)

Ou :

                                                                                                  (9)

After substituting (9) for (8), we get:

                                                                (10)

Since the dumb indices k and l will take the same values, therefore the two terms and  

are equal. We obtain:
                                                                             (11)

The state of equilibrium of the stresses in the region of the distortions is written:

                           (12)

                                                                (13)

This field of displacements can be written in this form:

                                  (14)

uk must satisfy Hooke's generalized law, linking stresses and deformations:
                                                                                                                                                     (15)

can be written as follows:

                                           (16)
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Where and represent complex constants which will be determined using the boundary conditions related to 
the problem.

So, by substituting (16) in (14) we have the equation of the field of displacements            

  
(17)

By deriving the field from displacement, we get the stress field and the fact that a periodic series of intrinsic 
dislocations produces in each medium a stress field whose components can be developed in Fourier series which 

is written:
  

  

                                                        (18)

g: network period
n: harmonic number
x1: the periodicity axis
x2: the axis of heteroepitaxy

   Represent the complex roots where:
Real part of
imaginary part of

                                                                                                                         

where is a fourth order tensor. To pass to a second order tensor we use the simplified notation of Voigt:

                                                                                                                                                            (19)

Complex constants which represent the solutions of the fields of displacements and stresses
Complex constants which represent the solutions of the fields of displacements and stresses
Complex constants

conjugate of  
Complex constants

The determination of the complex constants and for the positive layer deposited on the 
negative layer representing the substrate is done by applying the boundary conditions (Fig. 3) to the field suitable 
constraints which are:
- The continuity of the normal stresses at the interface:

                                                                                                                                                (20)      

                                                                                               k=1, 2 and 3
- The free surfaces of the bimetallic thin strip being in equilibrium:

                                                            k=1, 2 and 3                                  (21)
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Fig. 3
Boundary conditions in the stress field.

4   APPLICATIONS AND RESULTS

4.1  GaAs/(001)Si system

In this work we have chosen the materials Gallium Arsenide (GaAs) and Silicon (Si) which are the subject of 
several studies in the field of optoelectronics.

Table1 
Parameters of GaAs/ Si materials [12,13]

Parameters GaAs Si

Lattice parameters a(nm) 0.56533 0.5428

0.25 0.23

(Gpa) 46.27 66.28

Burgers vector b (nm) 0.3838 0.3997

Burgers vector of network b (nm) 0.3917

Period  of dislocation network  g (nm) 9.7

0.65

Anisotropic elastic  constants Cij (Gpa)

C11 = 118

C12 = 53.5

C44 = 59.4

C11 = 165.7

C12 = 63.9

C44 = 79.6

We take : 



71                                A. Boussaha et al.

Journal of Solid Mechanics Vol. 16, No. 1 (2024)  

In the following, we present the results of the stress simulation in the upper free layer of the GaAs/Si 
heterostructure in both isotropic and anisotropic cases. 

       

4.2 Isotropic GaAs/Si case

Figures 4, 5, 6 and 7 illustrate, in the isotropic elastic case, the iso- constraints curves of a network of edge 
dislocations located at the interface of two GaAs and Si facets.

The representation of the iso- constraints σ11 and σ22 in 2D and 3D varying between 5 Mpa and 10 Mpa clearly 
shows the importance of the deformation around the dislocation along the X2 axis for a total thickness of the 
heterostructure of 10 nm and a vector of burgers b = 0.3917 nm oriented along the direction of periodicity of the X1

dislocations.

Fig. 4
Iso-constraints σ22 in 2D GaAs / (001) Si: isotropic case.

Fig. 5
Iso-constraints σ22 in 3D GaAs / (001) Si: isotropic case.

Fig. 6
Iso-constraints σ11 in 2D GaAs/(001)Si: isotropic case.

Fig. 7
Iso-constraints σ11 in 3D GaAs/(001)Si: isotropic case.
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4.3 Anisotropic GaAs/Si case

Fig. 8
Iso- constraints σ22 in 2D GaAs/(001)Si  anisotropic case.

Fig. 9
Iso- constraints σ22 in 3D GaAs/(001)Si anisotropic case.

Fig. 10
Iso- constraints σ11 in 2D GaAs/(001)Si anisotropic case.

Fig. 11
Iso- constraints σ11 in 3D GaAs/(001)Si anisotropic case.

          
     Fig. 12                                                                                          Fig. 13
     Iso- constraints σ12 in 2D GaAs/(001)Si anisotropic case.          Iso- constraints σ12 in 3D GaAs/(001)Si anisotropic case.
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The results obtained from the theory and the simulation calculation shown in figures 8 to 13 in the form of 2D 
and 3D stress maps are to be understood. The 3D relief of the deformation of the interface between GaAs/(001)Si is 
due to the unidirectional dislocation network of Misfit which is a function of the deposited thickness for a vector of 
burgers oriented along Ox1. The deformation peak is clearly significant in the vicinity of the core of the dislocation 
which propagates tensile and compressive stresses influencing the mechanical behavior of the heterostructure.

The importance of the elastic quantities on the surface caused by the network of interfacial dislocations causing 
the phenomenon of undulation represents a determining index on the possibility of using the surface for a possible 
3D growth of nanometric layers. This same phenomenon allows an elastic relaxation of the heterostructure being 
under tensile and compressive stress for a total thickness of 10 nm.

The symmetry of the stress fields in the isotropic case is quite visible contrary to the anisotropic case because of 
the anisotropy effect.

5   CONCLUSIONS   

This work allowed us to examine and simulate, at the nanometric scale, the stress fields generated by 
unidirectional Misfit dislocation networks in the cases of isotropic and anisotropic elasticity.

After establishing the hypotheses of the chosen model, which is a thin bimetallic strip, representing the GaAs/Si 
semiconductor heterostructure, and the boundary conditions relating to the problem posed, we obtained results of 
the stress distribution around a dislocation showing that the deformation is greater near the core of the dislocation.

The importance of the elastic quantities on the surface caused by the network of interfacial dislocations causing 
the phenomenon of undulation represents a determining index on the possibility of using the surface for a possible 
3D growth of nanometric layers. This same phenomenon allows an elastic relaxation of the heterostructure being 
under tensile and compressive stress for a total thickness of 10 nm.
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