Combined Encapsulation of Bifidobacterium bifidum and Beta-Carotene Using Casein-Carrageenan and Estimation of their Durability during Storage and in Simulated Gastric Acid Situation
Subject Areas : MicrobiologyA. Poursefollah 1 , D. Zare 2 , M. Mirzaei 3
1 - M. Sc. Student of the Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
2 - Assistant Professor of the Institute of Biotechnology, Iranian Research Organization for Science and Technology, Department of Biotechnology, Tehran, Iran.
3 - Assistant Professor of the Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
Keywords: Beta-carotene, Bifidobacterium bifidum, Carrageenan, Casein, Microencapsulation,
Abstract :
Introduction: Bifidobacterium bifidum is a beneficial probiotic usually utilized as supplement in food and food products. Beta-carotene is also a food supplement with antioxidant activity. These compounds are usually susceptible and have short durability, therefore, microencapsulation improves the sustainability. In the present study, the effect of encapsulation using “freeze drying” method was investigated on survivability of Bifidobacterium bifidum and stability of beta-carotene. Materials and Methods: Emulsified beta-carotene in a solution of sodium caseinate and carrageenan were prepared and mixed with a dense suspension of Bifidobacterium bifidum. The solutions were then dehydrated with a freeze dryer device. The viability of bacterium and durability of beta-carotene in encapsulated samples were compared with non-encapsulated samples at the day zero and during storage at 4 and 25 °C for one month and also in simulated gastric acid situation. Results: The results showed that encapsulation could increase the viability of encapsulated Bifidobacterium bifidum and durability of beta-carotene. The presence of beta-carotene in encapsulated samples significantly (P˂0.05) increased the survivability of encapsulated bacterium during storage. Microencapsulation had also a significant positive impact (P˂ 0.05) on the survivability of bacterium in simulated gastric conditions. Conclusion: Microencapsulation of bifidobacterium bifidum and beta-carotene using casein and carrageenan could improve the survivability of bacterium and stability of beta-carotene during storage and in simulated gastric acid situation.
امینی، م. افشین پژوه، ر. و یعقوبی، الف. (1391). بررسی و کاربرد انواع پری بیوتیک ها در صنایع غذایی و نقش آنها در سلامتی انسان. ماهنامه آموزشی و پژوهشی فناوری نوین غذا، شماره 31و32، صفحات 21-25.
بی نام. (1388). روش شمارش میکروارگانیسمهای پروبیوتیک ویژگیها و روش آزمون. استاندارد ملی ایران. شماره 11325. چاپ اول.
خسروی زنجانی، م.ع. محمدی، ن. بهروز نسب، ک. و صولتی، الف.ع. (1392). تاثیر ریزپوشانی بر روی زندهمانی لاکتوباسیلوس کازئی و بیفیدوباکتریوم بیفیدوم در شرایط شبیهسازی شده معده و روده. مجله پژوهشهای بالینی دامپزشکی. دوره چهارم، شماره ا ، صفحات 29-39.
خوش منظر، م. قنبرزاده، ب. همیشه کار، ح. صوتیخیابانی، م و رضاییمکرم، ر. (1391). بررسی عوامل موثر بر اندازه ذرات، پتانسیل زتا و ویژگی های رئولوژیک پایا در سامانه کلوئیدی حاوی نانو ذرات کاپاکاراگینان-کازئینات سدیم. نشریه پژوهش و نوآوری در علوم و صنایع غذایی، شماره 4 ، صفحات 272-255.
رضاییمکرم، ر. مرتضوی، ع. حبیبینجفی، م. شهیدی، ف و خمیری، م. (1387). اثر میکروانکپسولاسیون آلژینات کلسیم بر قابلیت زندهمانی لاکتوباسیلوس اسیدوفیلوس در شرایط شبیه سازی شده معده و روده انسان. فصلنامه علوم و صنایع غذایی. دوره 7، شماره 2، صفحات 60-51.
قاسمی، س. (1390). تهیه نانو کپسول های کازئین حاوی اسیدهای چرب بلند زنجیر چند غیر اشباعی با استفاده از تغییرات pH و اعمال فراصوت. پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه تربیت مدرس.
محمدی، ن. خسروی زنجانی، م. ع. اهری، ح. غیاثی طرزی، ب. و باخدا، ح. (1392). تاثیر ریزپوشانی با پوشش کیتوزان بر روی زندهمانی لاکتوباسیلوس کازئی و بیفیدوباکتریوم بیفیدوم در بستنی. مجله علوم تغذیه و صنایع غذایی ایران، سال هشتم، شماره 4. صفحات 134-125.
هجری، ع. خسروی، ع. قرنجیک، ک. و حجازی، م. الف. (1389). تهیه پودر میکروکپسوله بتاکاروتن با قابلیت استفاده در محیطهای آبی. نشریه علمی - پژوهشی علوم و فناوری رنگ 4 . صفحات 167 -161.
Annan, N. T., Borza, L. & Hansen, T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 41, 184–193.
Bltiz, H. D., Grosch, W. & Schieberle, P. (2009). Food chemistry fouth edition springer-verlag.
Champagne, C.P., Paul Ross, R., Saarela, M., Flemming Hansen, K. & Charalapopoulos, D. (2011). Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices (Review). Journal of Food Microbiology 149, 185–193.
Chavarria, M. I., Maranon, R., Ares, F. C., Ibanez, F. & Villaran, M. D. C. (2010). Microencapsulation of a prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142,185-189.
Chen, L. G., Remondetto, E. & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17, 272–283.
Chodak, A. D., Tarko, T. & Statek, M. (2008). “The effect of antioxidants on Lactobacillus Casei cultures”. Technologia Alimentaria, 7(4), 39-51.
Collado, M. C., Moreno, Y., Cobo, J. N., Mateos, J. A. & Hernan des, M. (2006). Molecular detection of bifidobactrium animals DN-173010 in human faeces during fermented milk administration. Food Res. Trends in Food Science & Technology, 39, 530-535.
De Carvalho, L. M., Gomes, P. B., Godoy, R.L.O., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., Nutti, M. R., Neves, A. C.
L., Vieira, A. C. R. & Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene. Food Research International 47, 337–340.
Donhowe, E.G. (2013). Microencapsulation of Beta carotene: Characterization, in vitro release, and bioavailability. A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree, pp. 10-84.
Flett, K. L. (2009). Aggregated proticles of casein micelles and kappa-carageenan as avalue- added functional ingredient. A thesis presented to the faculty of graduate studies of the University of Guelph.
Hansen, L. T., Allan-Wojtas, P.M., Jin, Y. L. & Paulson, A.T. (2002). Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology, 19, 35-45.
Gutierrez, F. J., Albillos, S.M., Sanz, E. C., Cruz, Z., Estreda, C. G. & Guerra, A. G. (2013). Methods for the nanoencapsulation of b-carotene in the food sector (Review). Trends in Food Science & Technology, 32, 73-83.
Ji, S., Corredig, M. & Goff, H. D. (2008). Aggregation of casein micelles and κ-carrageenan in reconstituted skim milk. Food Hydrocolloids, Volume 22, Issue 1, 56-64.
Krasaekoopt, W., Bhandari, B. & Deeth, H. (2006). Survival of probiotics encapsulated in chitosan- coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT-Food Science & Technology. 39, 177-183.
Mueller, L. & Boehm, V. (2011). Antioxidant activity of β-Carotene compounds in different in vitro assays, Molecules 16, 1055-1069.
Liang, R., Huang, Q., Ma, J., Shoemaker, C. F. & Zhong, F (2013). Effect of relative humidity on the store stability of spray-dried betacarotene nanoemulsions. Food Hydrocolloids, 33, 225-233.
Liu, Z., Jiao, Y., Zhou, C. & Zhang, Z. (2008). Polysaccharides based nanoparticles as drug delivery systems, Advanced Drug Delivery Review. 60, 1650-1662.
Ozcelik, B., Karadag, A. & Ersen, S. (2009). Bioencapsulation of Beta-Carotene in Three different methods. XVIIth International Conference on Bioencapsulation, Groningen, Netherlands. September, pp. 24-26.
Pinto, S. S., Fritzen-Freire, C. B., Benedetti, S., Murakami, F.S., Petrus, J. C., Prudêncio, E. S. & Amboni, R. D. (2015). Potential use of whey concentrate and prebiotics as carrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Research International, 67, 400–408.
Ron, N., Zimet, P., Bargarum, J. & Livney Y. D. (2010). Betalactoglobulin Polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. International Dairy Journal, 20, 686-693.
Saarela, M., Mogensen, G., Fonde´n c, R., Ma¨tto, J. & Sandholm, T. M. (2000). Probiotic bacteria: safety, functional and technological Properties. Journal of Biotechnology, 84, 197–215.
Semo, E., Kesselman, E. & Livney, Y.D. (2007). Casein micelle as a natural Nanocapsular vehicle for nutraceaticals. Food Hydrocolloid, pp. 1-4.
Shamekhi, F., Mustafa, SH., Ariff, A. & Manap, Y. (2011). Improved cell viability of bifidobacterium during freeze drying, storage and gastrointestinal tract transit by microencapsulation for incorporation into infant formulae. Dairy Journal, 8, 83-97.
Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. & Kailas-apathy, K. (2000). Encapsulation of probiotic bacteria with alginate starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, pp. 47-55.
Takahashi, N., Xiao, J. Z., Miyaji, K., Yaeshiima, T., Hiramatsu, A. & Iwatsuki, K. (2004). Selection of acid tolerant bifidobacteria and evidence for a low- pH-inducible acid tolerance response in bifidobacterium longum. Journal of Dairy, pp .340-345.
Ye, A. (2008). Complexation between milk proteins and poly saccharides via electrostatic interaction”. International Journal of Food Science and Technology, 43, 406-413.
_||_