Effects of thymol on atheroma plaque, concentration of blood lipids and atherogenic indices serum in male NMRI mice fed with a high-cholesterol diet
Subject Areas :
Journal of Comparative Pathobiology
Karkhaneh, L., Yaghmaei, P.*, Ebrahim-Habibi, A., Parivar, K., Sadeghizadeh, M. .
1
1 - .
Received: 2018-04-13
Accepted : 2018-04-13
Published : 2018-03-21
Keywords:
Atherogenic index,
Atherosclerosis,
Cholesterol,
Serum lipids,
Thymol,
Abstract :
Atherosclerosis is characterized by the accumulation of fat and inflammatory response in the artery intima and can cause narrowing or complete blockage of the artery. Thymol is a phenolic monoterpene with antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the effects of thymol on blood lipids, atherogenic indices and atheroma plaque of NMRI mice fed a high-cholesterol diet (HCD). 45 NMRI male mice were divided into 5 groups (n=9): Animals of the control group received a normal diet. Whiles in the HCD group received a diet containing 2% cholesterol for 18 weeks. Animals of the sham group received HCD for 12 weeks and then normal diet for 6 weeks with a thymol solvent (oil). The experimental groups 1 and 2 received HCD for 12 weeks and then received a normal diet with thymol at doses of 12 mg/kg and 24 mg/kg for 6 weeks, respectively. At the end of study, concentration of serum lipids and atherogenic indices were measured. Also aorta was measured microscopically. In the present study, consumption of HCD resulted in the formation of atheroma plaque, increased serum triglycerides, total cholesterol concentration, atherogenic indices and significantly decreased high density lipoprotein cholesterol (HDL-C). Treatment with both doses of thymol significantly reduced these changes and improves blood lipids, atherogenic indices was normal and atheroma plaques. The results of this study suggest that thymol can be used for treatment of increased total cholesterol and triglycerides and to improve the atheroma plaque.
References:
جلالوند، ف.، یغمایی، پ.، ابراهیم حبیبی، آ.، محمد آملی، م.، کیمیاگر، م.(1391): تاثیر برخی ترکیبات طبیعی روی غلظت آنتی اکسیدان تام سرم (TAC)در موشهای چاق نژاد NMRI . مجله علمی پژوهشی زیست شناسی جانوری تجربی. 1(3): 12 -1.
نجفیان، م.، ابراهیم حبیبی، آ.، یغمائی، پ.، پریور، ک.، لاریجانی، ب.(1390): تأثیر ترانس چالکون برفعالیت آنزیم آلفاآمیلاز، میزان قند خون ولیپیدها در رت های دیابتی وغیردیابتی. مجله ارمغان دانش. 16(1): 60-51.
AL-Maleki, A.L. (2010): Antioxidant properties of thymol and butylated hydroxyl toluene in carbon tetrachloride-induced mice liver injury. JKAU. Sci. 22(1): 239-248.
Aman, S.h., Moin, S.h., Owais, M., Siddiqui, M.U. (2013): Antioxidant activity of thymol: protective role in AAPH-induced hemolysis in diabetic erythrocytes. Int. J. Pharm. Sci. Invent. 2(3): 55-60.
Amirkhizi, F., Siassi, F., Minaie, S., Djalali, M., Rahimi, A., Chamari, M. (2007): Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? ARYA. Atheroscler. 2(4): 189-192.
Basu, M., Prasad, R., Jayamurthy, P., Pal, K., Arumughan, C., Sawhney, R.C. (2007): Anti‑atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine. 14(11): 770-777.
Katare, C., Saxena, S. (2013): Amelioration of selected cardiac risk factors through supplementation of diet with flaxseed and soya bean. Inte. J. Nutr. Pharmacol. Neurol. Dis. 3(4): 352-2657.
El-Nekeety, A.A., Mohamed, S.R., Hathout, A.S., Hassan, N.S., Aly, S.E., Abdel-Wahhab, M.A. (2011): Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon. 57(7-8): 984-991.
Fachini-Queiroz, F.C., Kummer, R., Estevao-silva, C.F., Carvalho, M.D., Cunha, J.M., Grespan, R., Bersani-Amado, C.A., Nakamura, R.K. (2012): Effects of thymol and carvacrol, constitiuents of thymus vulgaris L.Essntial oil, on the inflammatory response. Evid. Based. Complement. Alternat. Med. 2012(2012): 1-10.
Grassi, D., Desideri, G., Croce, G., Tiberti, S., Aggio, A., Ferri, C. (2009): Flavonoids, vascular function and cardiovascular protection. Curr. Pharm. Des. 15(10): 1072-1084.
Haque, M.R., Ansari, S.H., Najmi, A.K., Ahmad, M.A. (2014): Monoterpene phenolic compound thymol prevents high fat diet induced obesity in murine model. Toxicol. Mech. Methods. 24(2): 116-23.
Hu, Y.W., Zhang, P., Yang, J.Y., Huang, J.L., Ma, X., Li, S.F., Zhao, J.Y., Hu, Y.R., Wang, Y.C., Gao, J.J., Sha, Y.H., Zheng, L., Wang, Q. (2014): Nur77 Decreases Atherosclerosis Progression in apoE2/2 mice fed a high-fat/high-cholesterol diet. PLoS. One. 9(1): 1-12.
Karkhaneh, L., Yaghmaei, P., Parivar, K., Sadeghizadeh, M., Ebrahim-Habibi, A. (2016): Effect of trans-chalcone on atheroma plaque formation, liver fibrosis and adiponectin gene expression in cholesterol-fed NMRI mice. Pharmacol. rep. 68(4): 720-727.
Lee, S.J., Umano, K., Shibamoto, T., Lee, K.G. (2005): Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (thymus vulgaris L) and their antioxidant properties. J. Food. Chem. 91(1): 131-137.
Lohmann, C., Schäfer, N,. von Lukowicz, T., Sokrates Stein, M.A., Borén, J., Rütti, S., Wahli, W., Donath, M.Y., Lüscher, T.F., Matter, C.M. (2009): Atherosclerotic mice exhibit systemic inflammation in periadventitial and visceral adipose tissue, liver, and pancreatic islets. Atherosclerosis. 207(2): 360-367.
Milei, J., Ottaviani, G., Lavezzi, A.M., Grana, D.R., Stella, I., Matturri, L. (2008): Perinatal and infant early atherosclerotic coronary lesions. Can. J. Cardiol. 24(2): 137–141.
Mohajeri, D. (2013): Effects of Solanum lycopersicum L. on serum lipid profile and oxidative stress in liver tissue of high fat fed diet rats. Life. Sci. 10(3s): 431-435.
Pleuso, M.R. (2006): Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase and modulate lipid homeostasis in adipose tissue and liver. Exp. Biol. Med. 231(8): 1287-1299.
Saravanan, S., Pari, L. (2016): Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice. Chem. Biol. Interact. 245: 1-11.
Saravanan, S., Pari, L. (2015): Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur. J. Pharmacol. 761: 279-287.
Savel, J., Lafitte, M., Pucheu, Y., Pradeau, V., Tabarin, A., Couffinhal, T. (2012): Very low levels of HDL cholesterol and atherosclerosis, a variable relationship–a review of LCAT deficiency. Vasc. Health. Risk. Manag. 8: 357-361.
Steinberg, D. (2009): The LDL modification hypothesis of atherogenesis: an update. J. Lipid. Res. 50(Suppl): S376–S381.
Weber, C., Noels, H. (2011): Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17(11): 1410‑1422.
Wong, H., Schotz, M.C. (2002): The lipase gene family. J. Lipid. Res. 43(7): 993-999.
Xu, Y.J., Zhang, M., Ji, L., Elimban, V., Chen, L., Dhalla, N.S. (2012): Suppression of high lipid diet induced by atherosclerosis sarpogrelate. J. Cell. Mol. Med. 16(10): 2394-2400.
Yang, C., Sun, Z., Li, Y., Ai, J., Sun, Q., Tian, Y. (2014): The correlation between serum lipid profile with carotid intima-media thickness and plaque. BMC. Cardiovasc. Disord. 9(14): 181-188.
Young, C.E., Karas, R.H., Kuvin, J.T. (2004): High-density lipoprotein cholesterol and coronary heart disease. Cardiol. Rev. 12(2): 107-119.
_||_