The Effect of Ultrasound Pretreatment on the Antioxidant Properties of Hydrolyzed Gluten by Trypsin
Mohammad Latif
1
(
Department of Food Science and Technology, Az.C., Islamic Azad University, Azadshahr, Iran
)
Seyyed Hossein Hosseini Ghaboos
2
(
Food Science and Technology Research Center of East Golestan, Az.C., Islamic Azad University, Azadshahr, Iran
)
َAlireza Sadeghi Mahoonak
3
(
Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
)
Keywords: Antioxidant, Ultrasound, Hydrolyzed Protein, Trypsin, Gluten,
Abstract :
In this research, the effect of ultrasound pretreatment at 45 and 90% intensities was investigated on the antioxidant properties (DPPH radical scavenging activity and total antioxidant capacity) of hydrolyzed gluten using trypsin enzyme at time intervals of 30-180 minutes. In the next step, the effect of different concentrations (20-80 mg/ml) of the optimal treatment on antioxidant properties (DPPH radical scavenging activity, total antioxidant capacity and Fe chelating activity) was investigated and compared with the antioxidant activity of vitamin C as a synthetic antioxidant. The results showed that ultrasound pretreatment with 45% intensity significantly increased the antioxidant properties (DPPH radical scavenging activity and total antioxidant capacity) of hydrolyzed gluten at all hydrolysis times. On the other hand, the higher intensity of ultrasound had a negative effect on the antioxidant properties of the hydrolyzed samples. Finally, the sample with ultrasound pretreatment of 45% intensity and hydrolysis time of 150 minutes, which had the highest DPPH radical scavenging activity and total antioxidant capacity, was selected as the optimal treatment. Evaluation the effect of concentration on antioxidant properties showed that the highest Fe chelating activity (69.16 %) and DPPH radical scavenging activity (49.76 %) at a concentration of 60 (mg/ml) and the highest total antioxidant capacity 0.937, absorption at 695 nm) was obtained at a concentration of 70 (mg/ml). As a result, hydrolyzed gluten can be used in food formulations to produce functional foods, and it can also be used as a bioactive compound in the pharmaceutical industry.
1. کاوه شیما، صادقی ماهونک علیرضا، قربانی محمد، سرابندی خشایار. مقایسهی ویژگیهای آنتیاکسیدانی پروتئین هیدرولیز شده دانه شنبلیله با آلکالاز و پانکراتین. نوآوری در علوم و فناوری غذایی. 1398؛ 11(4): 88-77. doi:10.30495/JFST.2019.545907
2. کاوه شیما، صادقی ماهونک علیرضا، قربانی محمد، جعفری سید مهدی، سرابندی خشایار. بهینهسازی عوامل مؤثر در فعالیت آنتیاکسیدانی پروتئین هیدرولیز شدهی دانه شنبلیله با استفاده از روش سطح پاسخ. علوم تغذيه و صنايع غذايي ايران. 1398؛ ۱۴(۱): ۸۸-۷۷.
3. مشگین¬فر نسیم، صادقی ماهونک علیرضا، قربانی محمد، ضیایی فر امان محمد، کاشانی نژاد سید مهدی. بهینه سازی تولید پروتئین هیدرولیز شده از محصولات جانبی صنایع گوشت به کمک روش سطح پاسخ. پژوهش های صنایع غذایی. 1393؛ 24(2): 225-215.
4. مظلومی سیده نرگس، صادقی ماهونک علیرضا، قربانی محمد، هوشمند غلامرضا. تعیین شرایط بهینه تولید پپتیدهای ضداکسایش حاصل از هیدرولیز پروتئین هسته پرتقال با آنزیم آلکالاز. مجله علوم و صنایع غذایی ایران. 1398؛ ۱۶(۸۸): ۳۵۶-۳۴۳.
5. مقصودلو عاطفه. صادقی ماهونک علیرضا. محب الدینی حسین. بررسی ویژگی¬های آنتی¬اکسیدانی پروتئین هیدرولیز شده گرده گل زنبور عسل. نشریه علوم و صنایع غذایی ایران. 1396؛ ۱4(73): 240-227.
6. Adjonu R, Doran G, Torley P, Agboola S. Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering. 2014 Feb 1;122:15-27. doi.org/10.1016/j.jfoodeng.2013.08.034
7. Afanas' ev IB, Dcrozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochemical pharmacology. 1989 Jun 1;38(11):1763-9. doi.org/10.1016/0006-2952(89)90410-3
8. Alzorqi I, Ketabchi MR, Sudheer S, Manickam S. Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant β-d-glucan polysaccharides. Ultrasonics Sonochemistry. 2016 Jul 1;31:71-84. doi.org/10.1016/j.ultsonch.2015.12.004
9. Arabshahi-Delouee S, Urooj A. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry. 2007 Jan 1;102(4):1233-40.doi.org/10.1016/j.foodchem.2006.07.013
10. Batista I, Ramos C, Coutinho J, Bandarra NM, Nunes ML. Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry. 2010 Jan 1;45(1):18-24. doi.org/10.1016/j.procbio.2009.07.019
11. Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry. 2009 Jun 15;114(4):1198-205. doi.org/10.1016/j.foodchem.2008.10.075
12. Chi CF, Hu FY, Wang B, Li T, Ding GF. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods. 2015 May 1;15:301-13. doi.org/10.1016/j.jff.2015.03.045
13. Considine T, Patel HA, Anema SG, Singh H, Creamer LK. Interactions of milk proteins during heat and high hydrostatic pressure treatments—a review. Innovative food science & emerging technologies. 2007 Mar 1;8(1):1-23. doi.org/10.1016/j.ifset.2006.08.003
14. Ding Q, Zhang T, Niu S, Cao F, Wu-Chen RA, Luo L, Ma H. Impact of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrasonics Sonochemistry. 2018 Apr 1;42:704-13. doi.org/10.1016/j.ultsonch.2017.11.027
15. Fadimu GJ, Gill H, Farahnaky A, Truong T. Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food and Bioprocess Technology. 2021 Nov;14(11):2004-19. doi.org/10.1007/s11947-021-02700-4
16. Fiaschi T, Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. International journal of cell biology. 2012;2012(1):762825. doi.org/10.1155/2012/762825
17. Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry. 2010 Jul 1;121(1):178-84. doi.org/10.1016/j.foodchem.2009.12.027
18. Jiang L, Wang J, Li Y, Wang Z, Liang J, Wang R, Chen Y, Ma W, Qi B, Zhang M. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food research international. 2014 Aug 1;62:595-601. doi.org/10.1016/j.foodres.2014.04.022
19. Jin J, Ma H, Wang K, Yagoub AE, Owusu J, Qu W, He R, Zhou C, Ye X. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics Sonochemistry. 2015 May 1;24:55-64. doi.org/10.1016/j.ultsonch.2014.12.013
20. Karami Z, Peighambardoust SH, Hesari J, Akbari-Adergani B, Andreu D. Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience. 2019 Dec 1;32:100450. doi.org/10.1016/j.fbio.2019.100450
21. Kazemi M, Karim R, Mirhosseini H, Hamid AA. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids. Food chemistry. 2016 Sep 1;206:156-66. doi.org/10.1016/j.foodchem.2016.03.017
22. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry. 2007 Jan 1;102(4):1317-27. doi.org/10.1016/j.foodchem.2006.07.016
23. Kong X, Zhou H, Qian H. Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chemistry. 2007 Jan 1;102(3):759-63. doi.org/10.1016/j.foodchem.2006.06.062
24. Li B, Chen F, Wang X, Ji B, Wu Y. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food chemistry. 2007 Jan 1;102(4):1135-43. doi.org/10.1016/j.foodchem.2006.07.002
25. Li X, Da S, Li C, Xue F, Zang T. Effects of high‐intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (Chenopodium quinoa Willd.) protein isolate. Cereal Chemistry. 2018 Jul;95(4):518-26. doi.org/10.1002/cche.10055
26. Li XX, Han LJ, Chen LJ. In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. Journal of the Science of Food and Agriculture. 2008 Jul;88(9):1660-6. doi.org/10.1002/jsfa.3264
27. Liu CC, Tellez-Garay AM, Castell-Perez ME. Physical and mechanical properties of peanut protein films. LWT-Food science and technology. 2004 Nov 1;37(7):731-8. doi.org/10.1016/j.lwt.2004.02.012
28. Liu P, Liao W, Qi X, Yu W, Wu J. Identification of immunomodulatory peptides from zein hydrolysates. European Food Research and Technology. 2020 May;246(5):931-7. doi.org/10.1007/s00217-020-03450-x
29. Pihlanto A. Antioxidative peptides derived from milk proteins. International dairy journal. 2006 Nov 1;16(11):1306-14. doi.org/10.1016/j.idairyj.2006.06.005
30. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry. 1999 May 1;269(2):337-41. doi.org/10.1006/abio.1999.4019
31. Saito K, Jin DH, Ogawa T, Muramoto K, Hatakeyama E, Yasuhara T, Nokihara K. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. Journal of agricultural and food chemistry. 2003 Jun 4;51(12):3668-74. doi.org/10.1021/jf021191n
32. Shimizu M, Sawashita N, Morimatsu F, Ichikawa J, Taguchi Y, Ijiri Y, Yamamoto J. Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thrombosis research. 2009 Mar 1;123(5):753-7. doi.org/10.1016/j.thromres.2008.07.005
33. Soria AC, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in food science & technology. 2010 Jul 1;21(7):323-31. doi.org/10.1016/j.tifs.2010.04.003
34. Tian R, Feng J, Huang G, Tian B, Zhang Y, Jiang L, Sui X. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrasonics sonochemistry. 2020 Nov 1;68:105202. doi.org/10.1016/j.ultsonch.2020.105202
35. Uluko H, Zhang S, Liu L, Tsakama M, Lu J, Lv J. Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods. 2015 Oct 1;18:1138-46. doi.org/10.1016/j.jff.2014.11.024
36. Umayaparvathi S, Meenakshi S, Vimalraj V, Arumugam M, Sivagami G, Balasubramanian T. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition. 2014 Jul 1;4(3):343-53. doi.org/10.1016/j.bionut.2014.04.006
37. Biesiekierski JR. What is gluten?. Journal of gastroenterology and hepatology. 2017 Mar;32:78-81. doi.org/10.1111/jgh.13703
38. Wang Y, Wang Z, Handa CL, Xu J. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chemistry. 2017 Mar 1;218:165-72. doi.org/10.1016/j.foodchem.2016.09.069
39. Weiss J, Gulseren I, Kjartansson G. Physicochemical Effects of High‐Intensity Ultrasonication on Food Proteins and Carbohydrates. Nonthermal Processing Technologies for Food. 2010 Dec 31:109-34. doi.org/10.1002/9780470958360.ch9
40. Wen C, Zhang J, Zhang H, Duan Y, Ma H. Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food chemistry. 2019 Nov 30;299:125165. doi.org/10.1016/j.foodchem.2019.125165
41. Wen C, Zhang J, Zhou J, Duan Y, Zhang H, Ma H. Effects of slit divergent ultrasound and enzymatic treatment on the structure and antioxidant activity of arrowhead protein. Ultrasonics sonochemistry. 2018 Dec 1;49:294-302. doi.org/10.1016/S0963-9969(03)00104-2
42. Wu HC, Chen HM, Shiau CY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food research international. 2003 Jan 1;36(9-10):949-57. doi.org/10.1016/S0963-9969(03)00104-2
43. Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry. 2008 Nov 15;111(2):370-6. doi.org/10.1016/j.foodchem.2008.03.078
44. Xue F, Wu Z, Tong J, Zheng J, Li C. Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates. Bioscience, biotechnology, and biochemistry. 2017 Oct 3;81(10):1891-8. doi.org/10.1080/09168451.2017.1361805
45. You L, Zhao M, Cui C, Zhao H, Yang B. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative food science & emerging technologies. 2009 Apr 1;10(2):235-40. doi.org/10.1016/j.ifset.2008.08.007
46. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. Journal of agricultural and food chemistry. 2002 Mar 13;50(6):1619-24. doi.org/10.1021/jf010964p
47. Zhang L, Sun X, Lu X, Wei S, Sun Q, Jin L, Song G, You J, Li F. Characterization of peanut protein hydrolysate and structural identification of umami-enhancing peptides. Molecules. 2022 Apr 30;27(9):2853. doi.org/10.3390/molecules27092853
48. Zhao Q, Xiong H, Selomulya C, Chen XD, Zhong H, Wang S, Sun W, Zhou Q. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food chemistry. 2012 Oct 1;134(3):1360-7. doi.org/10.1016/j.foodchem.2012.03.033
49. Zudaire L, Lafarga T, Viñas I, Abadias M, Brunton N, Aguiló-Aguayo I. Effect of ultrasound pre-treatment on the physical, microbiological, and antioxidant properties of calçots. Food and Bioprocess Technology. 2019 Mar 15;12(3):387-94. doi.org/10.1007/s11947-018-2217-z
