Optimization of Phycocyanin Production by Spirulina platensis Microalgae in Different Conditions of Temperature, Light Intensity, Culture Methods and Type of Carbon Source
Subject Areas :
Zahra Latifi
1
,
Habibollah Shahryari
2
,
Mohammad Hosein Marhamati Zadeh
3
,
Atefeh Arjmandian
4
,
Maryam Modamiyan Farshbafi
5
,
Leila Roozbeh Nasiraie
6
1 - باشگاه پژوهشگران جوان و نخبگان، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران.
2 - دانشآموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، واحد نور، دانشگاه آزاد اسلامی، نور، ایران.
3 - دانشیار، گروه بهداشت مواد غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران.
4 - دانشآموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران.
5 - دانشآموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، واحد ورامین - پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران.
6 - استادیار، گروه علوم و صنایع غذایی، واحد نور، دانشگاه آزاد اسلامی، نور، ایران.
Keywords: Protein Pigment, Green-blue Microalgae, Culture Methods, Spirulina platensis.,
Abstract :
Nowadays many pigments are commercially produced from unnatural sources. Due to the toxic effects of synthetic colors, there are various reasons for the use of natural colors in pharmaceutical and food applications. Phycocyanin is extracted from the algae of Spirulina as a natural pigment with strong antioxidant properties. This microalgae contains unique nutrients and nutritional and therapeutic effects that have been used to enrichment various food products. In this study, the optimal conditions for the production and extraction of phycocyanin pigment from spirulina microalgae were investigated. In this study, the effect of carbon source (glucose, ethanol, acetic acid), culture method (continuous and non-continuous), temperature (28 and 38°C) and light intensity (2 and 3.8 Klux) on the production of phycocyanin pigment from Blue-green algae were examined. Data analysis was performed according to the factorial design using SPSS statistical software at a probability level of 0.05. The results of the continuous method tests were similar to the non-continuous method. Increasing the temperature from 28 to 38°C had a serious effect on reducing the production of phycocyanin pigment and all three carbon sources in the continuous method as the non-continuous method in the light intensity of 3.5 Klux and the temperature of 28°C produced the maximum amount of phycocyanin. The carbon source of glucose in a continuous method with a temperature of 28°C and a light intensity of 3.5 Klux produced 33.41% of the phycocyanin pigment, which was identified as a more appropriate method. In both continuous and non-continuous methods, due to high light intensity, the amount of phycocyanin production was high and these values increased with the addition of glucose carbon source.
1. فرجی د، رضایی ک ا، کلانتری م، هاشمی روان م، گل مکانی م، فرجی ن. بهینه¬سازی شرایط مختلف (دما، تغییر شدت نور، روش-های کشت (غیرمداوم و نیمه مداوم) و نوع منبع کربنی) برای تولید حداکثر فایکوسیانین توسط ریز جلبک اسپیرولینا پلاتنسیس (Arthrospira platensis). علومغذايي و تغذيه. 1393;12(1): 91-99.
2. قنبرپور ف. بهینه¬سازی شرایط کشت ریزجلبکها و روش استخراج انتخابی برای تولید رنگدانه. پایان¬نامه کارشناسی ارشد. 1392; وزارت علوم، تحقیقات و فناوری - دانشگاه خلیج فارس - دانشکده مهندسی.
3. Andrade MR, Costa JA. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture. 2007; 264 (1-4):130-4.
4. Bahrami A, Zolghadri S, Deilami E. Optimization of the production and extraction of phycocyanin from the Anabaena doliolum wet biomass. Modares Journal of Biotechnology. 2020;11(2):209-15.
5. Bercel TL, Kranz SA. Effects of spectral light quality on the growth, productivity, and elemental ratios in differently pigmented marine phytoplankton species. bioRxiv. 2020.
6. Cerreti M, Liburdi K, Del Franco F, Esti M. Heat and light stability of natural yellow colourants in model beverage systems. Food Additives & Contaminants: Part A. 2020; 37(6): 905-15.
7. Chen F, Zhang Y, Guo S. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology letters. 1996;18(5):603-8.
8. Choonawala BB. Spirulina production in brine effluent from cooling towers 2007.
9. Colla LM, Reinehr CO, Reichert C, Costa JAV. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource technology. 2007;98(7):1489-93.
10. De Oliveira Rangel-Yagui C, Danesi EDG, de Carvalho JCM, Sato S. Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource technology. 2004; 92(2): 133-41.
11. Del Pilar Sánchez-Saavedra M, Maeda-Martínez AN, Acosta-Galindo S. Effect of different light spectra on the growth and biochemical composition of Tisochrysis lutea. Journal of applied phycology. 2016; 28(2): 839-847.
12. Fayyad RJ, Ali A, Dwaish AS, Abboodi A. Anti cancer activity of Spirulina platensis methanolic extracts against L20B and MCF7 human cancer cell lines. Plant Arch. 2019; 19(1):1419-26.
13. Gouveia L, Raymundo A, Batista AP, Sousa I, Empis J. Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology. 2006;222(3):362-7.
14. Gupta M, Dwivedi UN, Khandelwal S. C- Phycocyanin: an effective protective agent against thymic atrophy by tributyltin. Toxicology Letters. 2011; 204(1):2-11.
15. Han F, Huang J, Li Y, Wang W, Wan M, Shen G, et al. Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresource technology. 2013;136:418-24.
16. Helmi-Seresht M, Saadatmand S, Khavari-Nejad R. Effects of light intensity and pH on the growth rate, lipid and protein content in Spirulina platensis. Applied Biology. 2015; 28(1): 37-50.
17. Juneja A, Ceballos RM, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 2013;6(9):4607-38.
18. Khazai Pool E, Shahidi F, Mortazavi SA, Mohebi M. The effect of different levels of Spirulina Platensis micro-algae and agar and guar hydrocolloids on water activity, texture, color parameters and Overall acceptability of kiwi puree-based fruit pastille. Food Science and Technology. 2015; 12(48):47-59.
19. Lewis M. Natural product screening: anti-oxidant screen for extracts. Journal of agricultural and Food Chemistry. 2012;15:3-11.
20. Madhyastha H, Vatsala T. Pigment production in Spirulina fussiformis in different photophysical conditions. Biomolecular engineering. 2007; 24(3):301-5.
21. Ohse S, Derner RB, Ozório RÁ, Corrêa RG, Furlong EB, Cunha PCR. Lipid content and fatty acid profiles in ten species of microalgae. Idesia. 2015, 33(1): 93-101.
22. Rashmi B. A review on spirulina (Arthrospira Platensis) for its antioxidant and neuroprotective effect. IP International Journal of Comprehensive and Advanced Pharmacology. 2020; 4(4):116-9.
23. Shizhong Liang XL, Chen F, Chen Z, editors. Current microalgal health food R & D activities in China. Asian Pacific Phycology in the 21st Century: Prospects and Challenges: Proceeding of The Second Asian Pacific Phycological Forum, held in Hong Kong, China, 21–25 June 1999; 2012: Springer Science & Business Media.
24. Soletto D, Binaghi L, Lodi A, Carvalho J, Converti A. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture. 2005;243(1-4):217-24.
25. Xie Y, Jin Y, Zeng X, Chen J, Lu Y, Jing K. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresource technology. 2015; 180: 281-7.
26. Zhu L. Microalgal culture strategies for biofuel production: a review. Biofuels, Bioproducts and Biorefining 2015; 9(6(: 801-14.