Optimization of the Microcoating of Polyphenolic Compounds of Vitis Viniferia Wastes with Maltodextrin and Basil Seed Gum
Subject Areas :Bahram Hasani 1 , Fakhri Shahidi 2 , َSeyyed Ali Mortazavi 3 , Mohabbate Mohebbi 4 , Reza Farhoosh 5
1 - Ph.D Student of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 - Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
3 - Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
4 - Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
5 - Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
Keywords: Sour Ggrape, Maltodextrin, Microcapsule, Basil Seed Gum.,
Abstract :
Microencapsulation of polyphenolic compounds with the aim of improving their stability and release has received much attention. In the present research, the polyphenolic extract of the wastes extracted by the combined effect of enzyme treatment and ultrasound was coated with maltodextrin and basil seed gum. In order to optimize the preparation of microcapsules, Design-Expert 13.0 software and response surface method were used. This design included 3 independent variables of maltodextrin level, basil seed gum (BSG) level and spray dryer inlet temperature. The design of the test was done in the form of a central composite design (CCD) and 4 repetitions at the central point. According to the results, increasing the inlet temperature of the dryer and increasing the level of maltodextrin as a carrier decreased the microcoating efficiency and the DPPH radical scavenging activity of the capsules in a non-linear manner. Increasing the temperature of the dryer and the level of the BSG carrier led to a non-linear decrease in the microencapsulation efficiency and the moisture content of the extract capsules. The increase of both coating factors caused an increase in the solubility of the capsules and a non-linear decrease in the water absorption capacity and a linear decrease in the mass density of the capsules. The optimal conditions included 12.129% maltodextrin, 0.5% BSG and the inlet temperature of the dryer was 177.22 degrees Celsius, and in these optimal conditions, microcoencapsulation efficiency was 75.60%, antioxidant activity was 63.657%, moisture content was 2.064%, water solubility was 73.339%, water absorption capacity was 88.45 g/100g, and bulk density was 63.657%. 0.454 and water activity was predicted to be 0.232. Since the desirability of this model for optimizing the production of capsules of extract of gourd waste was 80.37%, so this model showed a good ability to optimize the production of capsules of gourd extract.
1. احمدي عباس، مرتضوي سید علی، ميلاني الناز ، رضائي مکرم رضا، 1391. ارزيابي بقاء باکتري ريزپوشاني شده لاکتوباسيلوس اسيدوفيلوس در طول دوره نگهداري بستني ماستي سين بايوتيک. 1391؛ نشريه پژوهش هاي علوم و صنايع غذايي ايران، 8، (3): 278-271.
https://doi.org/10.22067/ifstrj.v8i3.18467
2. حاجی آقایی مرضیه، شریفی اکرم. بررسی برخی ویژگیهای فیزیکی پودر نوشیدنی فوری بر پایه عصاره چغندر قرمز، کف پوشی شده به دو روش هوای داغ و انجمادی. مجله علوم و صنایع غذایی ایران. 1399؛ ۱۷ (۱۰۷): ۶۷-۸۰
https://doi.org/10.52547/fsct.17.107.67
3. کمالي آزاده، شرايعي پروین، نيازمند راضیه، عين افشار سودابه. تاثير غلظت هاي مختلف مالتودکسترين و پلي وينيل پيروليدون بر پايداري ترکيبات موثره ي ريزپوشاني شده ي زعفران با روش خشک کن پاششي. نشريه پژوهش و نوآوري در علوم و صنايع غذايي. 1391؛ 1 (4): 254-241. 10.22101/JRIFST.2013.03.15.142 https://doi.org/
4. ملکی زاده نسرین، پیغمبردوست سید هادی، اولاد غفاری عارف، سرابندی خشایار. بررسی ویژگیهای جریان پذیری پودر عصاره ی سماق ریزپوشانی شده و خشک شده به روش پاششی و اثر شرایط مختلف نگهداری آن بر ترکیبات فنولی و فعالیت آنتی اکسیدانی. پژوهش و نوآوری در علوم و صنایع غذایی. 1397؛ 7(3):281-296.SID https://sid.ir/paper/234049/fa
5. Abdel-Aty A. M, Barakat A. Z, Mohamed S. A. Garden cress gum and maltodextrin as microencapsulation coats for entrapment of garden cress phenolic-rich extract: Improved thermal stability, storage stability, antioxidant and antibacterial activities. Food Science and Biotechnology. 2023; 32(1): 47-58. https://doi.org/10.1007/s10068-022-01171-3
6. Ali B. H, Ziada A, Blunden G. Biological effects of gum arabic: a review of some recent research. Food
and Chemical Toxicology. 2009; 47(1): 1-8. https://doi.org/10.1016/j.fct.2008.07.001
7. Arepally D, Goswami T. K. Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. Lwt. 2019: 99: 583-593.
https://doi.org/10.1016/j.lwt.2018.10.022
8. Asik S, Atbakan Kalkan T, Topuz A, Optimization of spray drying condition and wall material composition for myrtle extract powder using response surface methodology. Drying Technology. 2021; 39(12): 1869-1882. https://doi.org/10.1080/07373937.2021.1914077
9. Bhusari S. N, Muzaffar K, Kumar P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology. 2014; 266 (2): 354-364. https://doi.org/10.1016/j.powtec.2014.06.038
10. Caliskan G, Dirim S. N. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and Bioproducts Processing. 2013; 91(4): pp. 539-548.
https://doi.org/10.1016/j.fbp.2013.06.004
11. Cegledi E, Garofulić I. E, Zorić Z, Roje M, Dragović-Uzelac V. Effect of Spray Drying Encapsulation on Nettle Leaf Extract Powder Properties, Polyphenols and Their Bioavailability. Foods. 2022; 11(18): 2852.
https://doi.org/10.3390/foods11182852
12. Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry. 2013; 138(1): 414-420.
https://doi.org/ 10.1016/j.foodchem.2012.11.001
13. Cittadini A, Munekata PES, Pateiro M, Sarriés MV, Domínguez R, Lorenzo JM.. 2022. Encapsulationtechniques to increase lipid stability. Food Lipids. 2022; 1 (12): 413-59.
https://doi.org/10.1016/B978-0-12-823371-9.00010-1
14. Dadi DW, Emire SA, Hagos AD, Eun J-B. Physical and functional properties, digestibility, and storage stability of spray-and freeze-dried microencapsulated bioactive products from moringa stenopetala leaves extract. Industrial Crops and Products. 2020; 156(1): 112891.
https://doi.org/10.1016/j.indcrop.2020.112891.
15. De Beer D, Harbertson J. F, Kilmartin P. A, Roginsky V, Barsukova T, Adams D. O, Waterhouse A. L. Phenolics: A comparison of diverse analytical methods. American Journal of Enology and Viticulture. 2004; 55(4): 389-400. https://doi.org/10.5344/ajev.2004.55.4.389
16. Dehghan Thanha. R, Mahdian H, Amini Fard M. H, Bayat H, Garajian R. Optimizing the extraction conditions of red pepper phenolic compounds using ultrasound waves using the response surface method. Innovation in Food Science and Technology. 2018; 11(1): pp. 87-97.
https:/doi: 10.30495/jfst.2019.541229
17. Downey M. O, Dokoozlian N. K, Krstic M. P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. American
Journal of Enology and Viticulture. 2006; 57(3): 257-268.
https://doi.org/10.5344/ajev.2006.57.3.257
18. Ersus E, Yurdagel U. Microencapsulation of anthocyanin pigments of black carrot (Daucuscarota L.) by spray drier. Journal of Food Engineering. 2006; 80 (2): 805–812. https://doi.org/10.1016/j.jfoodeng.2006.07.009
19. Estevinho B. N, Rocha F. Development of Food–Grade Controlled Delivery Systems by Microencapsulation of Polyphenols with Health Benefits. In Central European Congress on Food. 2022; 495-510. Springer, Cham. https://doi.org/10.1007/s11947-021-02652-9
20. Fernandes D. B. R. V, Borges S.V, Botrel D. A. Gum arabic/starch /maltodextrin /inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers. 2014; 101(1): 524-532. https://doi.org/10.1016/j.carbpol.2013.09.083
21. Fia G, Bucalossi G, Gori C, Borghini F. and Zanoni, B. Recovery of bioactive compounds from unripe red grapes (cv. Sangiovese) through a green extraction. Foods. 2020; 9(5): 566- 573. https://doi.org/10.3390/foods9050566
22. Hajiaghaei M, Sharifi A. Physicochemical Properties of Red Beetroot and Quince Fruit Extracts Instant Beverage Powder: Effect of Drying Method and Maltodextrin Concentration. Journal of Food Quality. 2022; 2 (2): 1-8.
https://doi.org/10.5344/ajev.2006.57.3.257.
23. Hamzeh S, Motamedzadegan A, Shahidi S. A, Ahmadi M, Regenstein J. M. Effects of drying condition on physico-chemical properties of foam-mat dried shrimp powder. Journal of Aquatic Food Product Technology. 2019; 28(7): 794-805. https://doi.org/10.1007/s10068-022-01171-3.
24. Hanlin R. L, Hrmova M, Harbertson J. F, Downey M. O. Condensed tannin and grape cell wall interactions and their impact on tannin extractability into wine. Australian Journal of Grape and Wine Research. 2010; 16(1): 173-188. https://doi.org/10.5344/ajev.2004.55.4.389.
25. Jafari S. M, Ghalenoei, M. G, Dehnad D. 2017. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology. 2017; 311(2): 59-65.
https://doi.org/10.1016/j.powtec.2017.01.070
26. Jakubczyka, E., Gondeka, E., Tamborb, K., Jakubczyk E., Gondek E., Tambor K., 2011. Characteristics of selected functional properties of apple powders obtained by the foam-mat drying method. In ICEF 11 International Congress on Engineering and Food. Athens, Greece: International Association of Engineering and Food. https://doi.org/10.1080/07373937.2021.1914077.
27. Kennedy J. A, Matthews M. A, Waterhouse A. L. Effect of maturity and vine water status on grape skin and wine flavonoids. American Journal of Enology and Viticulture. 2002; 53(4): 268-274. https://doi.org/10.1016/j.fct.2008.07.001
28. Kim S. Y, Hyeonbin O, Lee P, Kim Y. S. The quality characteristics, antioxidant activity, and sensory
evaluation of reduced-fat yogurt and nonfat yogurt supplemented with basil seed gum as a fat substitute. Journal of Dairy Science. 2020; 103(2): 1324-1336.
29. Li T.S, Sulaiman R, Rukayadi Y, Ramli, S. Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocolloids. 2021; 116(2): 106-122.
https://doi.org/10.1016/j.powtec.2018.07.080
30. Li Y, Tang B, Chen J, Lai P. Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Science and Technology. 2017; 38(2): 530-536.
https://doi.org/10.5344/ajev.2006.57.3.257.
31. Lourenço S. C, Moldão-Martins M, Alves V. D. Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. Foods. 2020; 9(6): 718-728.
https://doi.org/10.1016/j.jfoodeng.2006.07.009.
32. Mahdi A. A, Mohammed J. K, Al-Ansi W, Ghaleb A. D, Al-Maqtari Q. A, Ma M, Wang H. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules. 2020; 152(3): 1125-1134. https://doi.org/10.1016/j.fct.2008.07.001
33. Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R. Metabolite profiling of grape: flavonols and anthocyanins. Journal of agricultural and food chemistry. 2006; 54(20): 7692-7702. https://doi.org/10.5344/ajev.2004.55.4.389.
34. Mishra P, Mishra S, Mahanta C. L. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblicaofficinalis) juice powder. Food and Bioproducts Processing. 2014; 92(3): 252-258. https://doi.org/10.1016/j.fbp.2013.06.004
35. Moghaddam A. D, Pero M, Askari G. R. Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). Journal of Food Science and Technology. 2017; 54(2): 174-184. https://doi.org/10.1007/s10068-022-01171-3.
36. Navarro-Flores M. J, Ventura-Canseco L. M. C, Meza-Gordillo R, Ayora-Talavera T. D. R, Abud-Archila M. Spray drying encapsulation of a native plant extract rich in phenolic compounds with combinations of maltodextrin and non-conventional wall materials. Journal of Food Science and Technology. 2020; 57(1): 4111-4122. https://doi.org/10.1016/j.fct.2008.07.001
37. Nesterenko A, Alric I, Silvestre F, Durrieu V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial crops and products. 2013; 42(1): 469-79.
https://doi.org/10.1016/j.jfoodeng.2006.07.009.
38. Öncül N, Karabiyikli Ş. Factors affecting the quality attributes of unripe grape functional food products. Journal of Food Biochemistry. 2015; 39(6): 689-695.https://doi.org/10.1111/jfbc.12175
39. Ordoñez A. AL, Gomez J.D, Vattuone M. A, lsla M I. Antioxidant activities of sechium edule (Jacq) Swartz extracts. Food Chemistry. 2006; 97(3): 452-458. https://doi.org/10.1016/j.foodchem.2005.05.024
40. Oszmiański J, Wojdyło A, Kolniak J. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices. Food Chemistry. 2011; 127(2): 623-631. https://doi.org/10.1080/07373937.2021.1914073.
41. Pellicer J. A, Fortea M. I, Trabal J, Rodríguez-López M. I, Carazo-Díaz C, Gabaldón J. A, Núñez-Delicado E. Optimization of the microencapsulation of synthetic strawberry flavour with different blends of encapsulating agents using spray drying. Powder Technology. 2018; 338 (2): 591-598.
https://doi.org/10.1016/j.powtec.2018.07.080
42. Pudziuvelyte L, Marksa M, Jakstas V, Ivanauskas L, Kopustinskiene D. M, Bernatoniene J. Microencapsulation of Elsholtzia ciliata herb ethanolic extract by spray-drying: impact of resistant-maltodextrin complemented with sodium caseinate, skim milk, and beta-cyclodextrin on the quality of spray-dried powders. Molecules. 2019; 24(8): 14-21. https://doi.org/10.1016/j.fct.2008.07.002
43. Pui L. P, Karim R, Yusof Y. A, Wong C. W, Ghazali H. M. Optimization of spray-drying parameters for the production of ‘Cempedak’ (Artocarpus integer) fruit powder. Journal of Food Measurement and Characterization. 2020; 14(6): 3238-3249.
https://doi.org/10.1007/s10068-022-01271-7.
44. Quek S. Y, Chok N. K, Swedlund P, The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification. 2007; 46(5): 386-392. https://doi.org/10.5344/ajev.2006.57.3.257.
45. Ricci A, Mejia J. A. A, Versari A, Chiarello E, Bordoni A, Parpinello G. P. Microencapsulation of polyphenolic compounds recovered from red wine lees: Process optimization and nutraceutical study. Food and Bioproducts Processing. 2022; 132(2): pp. 1-12.
https://doi.org/10.1016/j.powtec.2017.01.070
46. Sablania V, Bosco S. J. D. Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. Powder Technology. 2018; 335(3): 35-41. https://doi.org/10.1080/07373937.2021.1914077.
47. Setford P. C, Jeffery D. W, Grbin P. R, Muhlack R. A. Factors affecting extraction and evolution of phenolic compounds during red wine maceration and the role of process modelling. Trends in Food Science & Technology. 2017; 69 (2): 106-117. https://doi.org/10.1016/j.fbp.2013.06.004.
48. Singh C.S., Paswan V.K, Rai D.C. Process optimization of spray dried Jamun (Syzygium cumini L.) pulp powder. LWT. 2019; 109(2): 1-6.
49. Tinello F, Lante A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies. 2018; 50 (2):pp. 73-83.
https://doi.org/10.1007/s10068-022-01171-3.
50. Tonon R. V, Freitas S. S, Hubinger M. D. Spray drying of açai (Euterpe oleraceae Mart.) juice: Effect of inlet air temperature and type of carrier agent. Journal of Food Processing and Preservation. 2011; 35(5): 691-700. https://doi.org/10.1111/j.1745-4549.2011.00518.x
51. Vanzo A, Cecotti R, Vrhovsek U, Torres A. M, Mattivi F, Passamonti S. "The fate of trans-caftaric acid administered into the rat stomach". Journal of Agricultural and Food Chemistry. 2007; 55 (4): 1604–11.
https://doi.org/10.1016/j.jfoodeng.2006.07.009.
52. Vidović S. S, Vladić J. Z, Vaštag Ž. G, Zeković Z. P, Popović L. M. Maltodextrin as a carrier of health benefit compounds in Satureja Montana dry powder extract obtained by spray drying technique. Powder Technology. 2014; 258 (2): 209-215.
https://doi.org/10.1016/j.fbp.2013.06.004
53. Zorić Z, Pelaić Z, Pedisić S, Garofulić I. E, Kovačević D. B, Dragović–Uzelac V. Effect of storage conditions on phenolic content and antioxidant capacity of spray dried sour cherry powder. LWT-Food Science and Technology. 2017; 118 (2): 109-121. https://doi.org/10.1007/s10068-022-01171-3.