اثرات هم افزایی مرکزی هیستامین و آدرنالین بر اخذ غذا و کورتیزول پلاسما در جوجه های گوشتی
اثرات هیستامین و آدرنالین بر اخذ غذا و کورتیزول پلاسما در جوجه ها
محورهای موضوعی : فیزیولوژی تجربی و آسیب شناسی
مصطفی دانشور 1 , مرتضی زندهدل 2 , بیتا وزیر 3 , احمد اصغری 4
1 - گروه علوم پایه، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه علوم پایه، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
3 - گروه علوم پایه، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اخذ غذا, آدرنالین, هیستامین, کورتیزول, جوجههای گوشتی,
چکیده مقاله :
زمینه و هدف: سالها پژوهش پیرامون مسیرهای فیزیولوژیک تنظیمکننده اشتها، منجر به شناسایی دهها میانجی عصبی دخیل در این فرآیند شده است. بر پایه این مطالعات، نقش سیستمهای هیستامینرژیک و آدرنرژیک در تنظیم اخذ غذا نیز به اثبات رسیده است. هدف از مطالعه کنونی، بررسی اثرات هم افزایی مرکزی هیستامین و آدرنالین بر اخذ غذا و کورتیزول پلاسما در جوجههای گوشتی میباشد. مواد و روشها: به منظور دستیابی به این هدف، سه آزمایش هر یک شامل یک گروه کنترل و سه گروه تیمار طراحی گشت. در آزمون اول محلول کنترل و هیستامین با دوزهای 75، 150 و 300 تجویز شد. در آزمون دوم محلول کنترل و آدرنالین با دوزهای 75، 150 و 300 نانومول تزریق گشت و در آزمون سوم علاوه بر محلول کنترل، هیستامین (75 نانومول)، آدرنالین (75 نانومول) و هیستامین + آدرنالین تزریق شد. سپس، جوجهها به قفسهایشان بازگردانده شدند و میزان اخذ غذای آنها به عنوان درصدی از وزن بدن ثبت گشت. پس از پایان آزمایشات، از طریق بریدن سر، خونگیری انجام و سطح کورتیزول پلاسما در تمامی گروهها ارزیابی شد. نتایج: بر اساس یافتهها، تجویز همزمان دوزهای تحت اثر هیستامین و آدرنالین سبب کاهش معنی دار اخذ غذا (P≤ 0.05) و افزایش معنی دار سطح کورتیزول پلاسما گشت (P≤0.01). نتیجهگیری: با توجه به نتایج، به نظر میرسد یک اثر همافزایی میان هیستامین و آدرنالین در کنترل اخذ غذا و سطح کورتیزول پلاسما وجود دارد.
Background & Aim: Years of research on the physiological pathways that regulate appetite have led to the identification of dozens of neural mediators involved in this process. Based on these studies, the role of histaminergic and adrenergic systems in regulating food intake has been proven. The aim of the current study is to investigate the central synergistic effects of histamine and adrenaline on food intake and plasma cortisol in broiler chickens. Materials and Methods: In order to achieve this goal, three experiments were designed, each including one control group and three treatment groups. In the first test, control solution and histamine were prescribed with doses of 75, 150, and 300. In the second test, the control solution and adrenaline were injected with doses of 75, 150, and 300 nmol, and in the third test, in addition to the control solution, histamine (75 nmol), adrenaline (75 nmol) and histamine + adrenaline were injected. Then, chickens were returned to their cages and their food intake was recorded as a percentage of body weight. After the end of the experiments, by cutting the head, blood was taken and the plasma cortisol level was evaluated in all groups. Results: Based on the findings, simultaneous administration of sub effective doses of histamine and adrenaline caused a significant decrease in food intake (P≤0.05) and a significant increase in plasma cortisol levels (P≤0.01). Conclusion: According to the results, it seems that there is a synergistic effect between histamine and adrenaline in controlling food intake and plasma cortisol levels
1. FURUSE M. Central regulation of food intake in the neonatal chick. Animal Science Journal. 2002;73(2):83-94.
2. Adeli A, Zendehdel M, Babapour V, Panahi N. Interaction between leptin and glutamatergic system on food intake regulation in neonatal chicken: role of NMDA and AMPA receptors. International Journal of Neuroscience. 2020;130(7):713-21.
3. Yuan L, Lin H, Jiang K, Jiao H, Song Z. Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens. British poultry science. 2008;49(4):487-95.
4. Zendehdel M, Hassanpour S. Ghrelin-induced hypophagia is mediated by the β 2 adrenergic receptor in chicken. The Journal of Physiological Sciences. 2014;64:383-91.
5. Bungo T, Shimojo M, Masuda Y, Choi Y-H, Denbow DM, Furuse M. Induction of food intake by a noradrenergic system using clonidine and fusaric acid in the neonatal chick. Brain Research. 1999;826(2):313-6.
6. Kanzler S, Januario A, Paschoalini M. Involvement of β3-adrenergic receptors in the control of food intake in rats. Brazilian Journal of Medical and Biological Research. 2011;44:1141-7.
7. Baghbanzadeh A, Hamidiya Z, Geranmayeh M. Involvement of central β-adrenergic circuitry in food and water intake in chickens. Neurophysiology. 2015;47:128-32.
8. Zendehdel M, Lankarani Mohajer L, Hassanpour S. Central muscarinic receptor subtypes (M1 and M3) involved in carbacol-induced hypophagia in neonatal broiler chicken. International Journal of Neuroscience. 2020;130(2):204-11.
9. Rafiei M, Taati M, Alavi S, Nayebzadeh H, Zendehdel M. Effects of intracerebroventricular injection of histamine and H1, H2 receptor antagonists on electrocardiographic parameters in broiler chickens. 2011.
10. Rozov SV, Zant JC, Karlstedt K, Porkka‐Heiskanen T, Panula P. Periodic properties of the histaminergic system of the mouse brain. European Journal of Neuroscience. 2014;39(2):218-28.
11. Erfanparast A, Tamaddonfard E, Henareh-Chareh F, editors. Central H2 histaminergic and alpha-2 adrenergic receptors involvement in crocetin-induced antinociception in orofacial formalin pain in rats. Veterinary Research Forum; 2020: Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
12. Tamaddonfard E, Erfanparast A, Farshid AA, Khalilzadeh E. Interaction between histamine and morphine at the level of the hippocampus in the formalin-induced orofacial pain in rats. Pharmacological Reports. 2011;63(2):423-32.
13. Shahid M, Tripathi T, Sobia F, Moin S, Siddiqui M, Khan RA. Histamine, histamine receptors, and their role in immunomodulation: an updated systematic review. The Open Immunology Journal. 2009;2(1).
14. Mirnaghizadeh SV, Zendehdel M, Babapour V. Involvement of histaminergic and noradrenergic receptors in the oxytocin-induced food intake in neonatal meat-type chicks. Veterinary research communications. 2017;41:57-66.
15. Daneshvar M, Zendehdel M, Vazir B, Asghari A. Correlation of Histamine Receptors and Adrenergic Receptor in Broilers Appetite. Archives of Razi Institute. 2022;77(1):141.
16. van Tienhoven At, Juhasz L. The chicken telencephalon, diencephalon and mesencephalon in stereotaxic coordinates. Journal of Comparative Neurology. 1962;118(2):185-97.
17. Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiology & Behavior. 1979;22(4):693-5.
18. Kalliecharan R. The influence of exogenous ACTH on the levels of corticosterone and cortisol in the plasma of young chicks (Gallus domesticus). General and Comparative Endocrinology. 1981;44(2):249-51.
19. Taati M, Nayebzadeh H, KHOSRAVINIA H, Cheraghi J. The role of the histaminergic system on the inhibitory effect of ghrelin on feed intake in broiler chickens. 2010.
20. Passani MB, Blandina P, Torrealba F. The histamine H3 receptor and eating behavior. Journal of Pharmacology and Experimental Therapeutics. 2011;336(1):24-9.
21. Denbow DM. Food intake regulation in birds. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 1999;283(4‐5):333-8.
22. Denbow D, Sheppard B. Food and water intake responses of the domestic fowl to norepinephrine infusion at circumscribed neural sites. Brain research bulletin. 1993;31(1-2):121-8.
23. Tiligada E, Ennis M. Histamine pharmacology: from Sir Henry Dale to the 21st century. British Journal of Pharmacology. 2020;177(3):469-89.
24. Knigge U, Willems E, Kjær A, Jørgensen H, Warberg J. Histaminergic and catecholaminergic interactions in the central regulation of vasopressin and oxytocin secretion. Endocrinology. 1999;140(8):3713-9.
25. Berthoud H-R. Mind versus metabolism in the control of food intake and energy balance. Physiology & behavior. 2004;81(5):781-93.
26. Richardson RD, Omachi K, Kermani R, Woods SC. Intraventricular insulin potentiates the anorexic effect of corticotropin releasing hormone in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2002;283(6):R1321-R6.
27. Tsujimoto S, Okumura Y, Kamei C, Tasaka K. Effects of intracerebroventricular injection of histamine and related compounds on corticosterone release in rats. British journal of pharmacology. 1993;109(3):807-13.
28. Tsujimoto S, Kamei C, Yoshida T, Tasaka K. Changes in plasma adrenocorticotropic hormone and cortisol levels induced by intracerebroventricular injection of histamine and its related compounds in dogs. Pharmacology. 1993;47(2):73-83.
29. Bugajski J, Turon M, Gadek-Michalska A, Borycz J. Catecholaminergic regulation of the hypothalamic-pituitary-adrenocortical activity. Journal of Physiology and Pharmacology. 1991;42(1).