بررسی تأثیر میزان یون استرانسیوم بر خواص حرارتی، زیست فعالی، ضد باکتریایی و رفتار سلولهای استئوبلاست MC3T3-E1 شیشه زیست فعال پایه سیلیکاتی
محورهای موضوعی : بیوموادنوشین نانکلی 1 , امیرحسین مغنیان 2 , مرتضی ثقفی یزدی 3
1 - دانشجوی کارشناسی ارشد، مهندسی مواد، گروه مهندسی مواد و متالورژی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران.
2 - استادیار، گروه مهندسی مواد و متالورژی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران.
3 - استادیار، گروه مهندسی مواد و متالورژی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران.
کلید واژه: شیشه زیست فعال پایه سیلیکاتی هیدروکسیآپاتایت استرانسیوم ضد باکتریایی سلولهای استئوبلاست MC3T3, E1,
چکیده مقاله :
شیشه های زیست فعال قابلیت اتصال با بافت های بدن را نیز دارند، از این نظر میتوان آنها را موادی مناسب برای کاربردهایی نظیر مهندسی بافت استخوان دانست. در این پژوهش ابتدا به سنتز و بررسی تغییرات ساختاری، زیست سازگاری، زیست فعالی، رفتار زیستی و خاصیت ضد باکتریایی شیشههای زیست فعال پایه سیلیکاتی جانشین شده با استرانسیوم و بدون استرانسیوم پرداخته شد. برای بررسی زیست فعالی، پودر شیشهها در زمان های 1، 3، 7 و 14 روز در محلول شبیهسازی شده با محیط بدن قرار داده شدند و قبل و بعد از بازههای زمانی مذکور، تغییرات و روند تشکیل لایه هیدروکسیآپاتایت روی سطح آنها، با استفاده از پراش پرتوایکس، مطالعات طیف سنجی فروسرخ، بررسی نرخ رهایش عناصر مختلف شیشه، تغییرات pH و مطالعات ریزساختار با استفاده از میکروسکوپ الکترونی روبشی، بررسی شد. نتایج آزمونهای پراش پـرتـوایکس و مطالعات طیف سنجی فـروسرخ، تغییرات ایجـاد شده روی لایه هیدروکسی آپاتایت بلورین را نشان داد. همچنین نتایج آزمون زنده/ مرده، بررسی ریزساختار هسته و ریز رشتههای اکتین سلولهای استئوبلاست MC3T3-E1 نشان داد که 5 درصد استرانسیوم در شیشه زیست فعال پایه سیلیکاتی منجر به رشد، تکثیر و فعالیت سلولهای استئوبلاست MC3T3-E1 شد. نتایج آزمون سمیت سلولی و ارزیابی فعالیت فسفات قلیایی نشان داد که جایگزینی استرانسیوم بجای کلسیم در ترکیب شیشه زیست فعال پایه سیلیکاتی نهتنها سمیت سلولی ایجاد نکرد بلکه باعث تکثیر قابلملاحظه و فعالیت سلولهای استئوبلاست MC3T3-E1 شد. بهبود خاصیت ضد باکتریایی شیشه زیست فعال حاوی استرانسیوم بر علیه باکتری مرسا در قیاس با شیشه زیست فعال بدون استرانسیوم دیده شد.
Bioactive glass (BG), is able to bind to body tissues, in this regard, it can be considered suitable material for applications such as bone tissue engineering. In this study, we first synthesized and studied the structural changes, biocompatibility, in vitro bioactivity, biological behavior and antibacterial properties of silicate-based BG containing with strontium. To evaluate the bioactivity, the BG powder was placed in a simulated body fluid (SBF) solution for 1, 3, 7 and 14 days and then before and after the mentioned time periods, the changes and the process of forming a hydroxyapatite (HA) layer on their surface was studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), release rates of various ions elements, pH changes and scanning electron microscopy (SEM). The results of X-ray diffraction tests and infrared spectroscopy studies confirmed the formation of crystalline HA layer on the BG surface. Moreover, the results of live/dead assay, nucleus microstructure and actin microfilaments of MC3T3-E1 osteoblast cells showed that 5% of strontium in silicate-based bioactive glass led to the growth, proliferation and activity of MC3T3-E1 osteoblast cells. The results of cytotoxicity test and evaluation of alkaline phosphate activity showed that substitution of strontium instead of calcium in silicate-based bioactive glass composition not only did not cause cytotoxicity but also caused significant proliferation and activity of MC3T3-E1 osteoblast cells. Meanwhile, improvements in the antibacterial properties of strontium-containing bioactive glass against MRSA bacteria were observed in comparison with strontium-free bioactive glass.
[1] Q. Fu, E. Saiz, M. N. Rahaman & A. P. Tomsia, "Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives," Mater. Sci. Eng. C, vol. 31, no. 7, pp. 1245–1256, 2011.
[2] E. Gentleman, Y. C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M. D. O’Donnell, R. G. Hill & M. M. Stevens, "The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro," Biomaterials, vol. 31, no. 14, pp. 3949–3956, 2010.
[3] J. R. Jones, "Review of bioactive glass: From Hench to hybrids," Acta Biomater., vol. 9, no. 1, pp. 4457–4486, 2013.
[4] م. نصر اصفهانی، "تأثیر تابش نور فرابنفش بر زیست فعالی پوششهای هیبریدی نانوساختار پلی سیلوکسان-تیتانیوم دیاکسید- شیشه زیستی به روش سل- ژل"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره 4، صفحه 129-138، 1394.
[5] H. Yuan, K. Kurashina, J. D. De Bruijn, Y. Li, K. De Groot & X. Zhang, "A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics," Biomaterials, vol. 20, no. 19, pp. 1799–1806, 1999.
[6] م. خورسند قاینی، "بررسی خصوصیات حرارتی کامپوزیت پلی لاکتیک اسید با ذرات شیشه زیست فعال 5S45 و هیدروکسی آپاتیت (HA) بهمنظور استفاده در پیچهای تداخلی قابل جذب"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد، سال یازدهم، شماره 4، صفحه 55-56، 1396.
[7] J. R. Jones, P. D. Lee & L. L. Hench, "Hierarchical porous materials for tissue engineering," Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci., vol. 364, no. 1838, 2006.
[8] M. Vallet-Regí, A. Zavras, D. Greenspan, S. Amar, T. Yamamuro, T. Nakamura, T. Yamamuro, J. Ross, S. A. Goldstein, J. B. Jupiter & D. I. Rosental, "Ceramics for medical applications," J. Chem. Soc. Dalt. Trans., vol. 19, no. 2, pp. 97–108, 2001.
[9] I. A. Silver, J. Deas & M. Erecińska, "Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability," Biomaterials, vol. 22, no. 2, pp. 175–185, 2001.
[10] م. نصر اصفهانی، "مقایسه خواص فیزیکی- شیمیایی سه نوع پوشش نانوساختار شیشه زیست فعال و زیست فعالی آنها"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، سال سوم، شماره 1، صفحه 29-35، 1388.
[11] X. Chen, Y. Meng, Y. Li & N. Zhao, "Investigation on bio-mineralization of melt and sol–gel derived bioactive glasses," Appl. Surf. Sci., vol. 255, no. 2, pp. 562–564, 2008.
[12] D. Arcos, D. C. Greenspan & M. Vallet-Regí, "A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses," J. Biomed. Mater. Res. Part A, vol. 65A, no. 3, pp. 344–351, 2003.
[13] M. D. O Donnell, P. L. Candarlioglu, C. A. Miller, E. Gentleman, M. M. Stevens, J. P. Zhong, X. Y. Liu, J. Chang, E. L. Cabarcos, K. D. Luk, W. K. Chan, J. C. Leong & P. J. Meunier, "Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration," J. Mater. Chem., vol. 20, no. 40, p. 8934, 2010.
[14] K. M. Ereiba, A. S. Abd Raboh & A. G. Mostafa, "Characterization of some bioactive glasses based on SiO2 –CaO–P2O5 –SrO quaternary system prepared by sol–gel method," Nat. Sci., vol. 12, no. 5, 2014.
[15] E. Bonnelye, A. Chabadel, F. Saltel & P. Jurdic, "Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro," Bone, vol. 42, no. 1, pp. 129–138, 2008.
[16] P. G. Galliano, A. L. Cavalieri & J. M. Porto L?pez, "A study by density measurements and indentation tests of a calcium silicophosphate bioactive glass with different MgO or SrO contents," J. Non. Cryst. Solids, vol. 191, no. 3, pp. 311–320, 1995.
[17] J. Christie & N. De Leeuw, "Effect of strontium inclusion on the bioactivity of phosphate-based glasses," J. Mater. Sci., 2017.
[18] A. Nommeots-Nomm, S. Labbaf, A. Devlin, N. Todd, H. Geng, A. K. Solanki, H. M. Tang, P. Perdika, A. Pinna, F. Ejeian, O. Tsigkou, P. D. Lee, M. H. N. Esfahani, C. A. Mitchell & J. R. Jones, "Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration," Acta Biomater., vol. 57, pp. 449–461, 2017.
[19] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi & T. Yamamuro, "Solutions able to reproducein vivo surface-structure changes in bioactive glass-ceramic A-W3," J. Biomed. Mater. Res., vol. 24, no. 6, pp. 721–734, 1990.
[20] A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki & T. Nakamura, "Preparation and assessment of revised simulated body fluids," J. Biomed. Mater. Res., vol. 65A, no. 2, pp. 188–195, 2003.
[21] D. S. Brauer, R. Brückner, M. Tylkowski & L. Hupa, "Sodium-free mixed alkali bioactive glasses," Biomed. Glas., vol. 2, no. 1, 2016.
[22] Y. Gotoh, K. Hiraiwa & M. Nagayama, "In vitro mineralization of osteoblastic cells derived from human bone.," Bone Miner., vol. 8, no. 3, pp. 239–50, 1990.
[23] H. M. Elgendy, M. E. Norman, A. R. Keaton & C. T. Laurencin, "Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material," Biomaterials, vol. 14, no. 4, pp. 263–269, 1993.
[24] C. E. Yellowley, Z. Li, Z. Zhou, C. R. Jacobs & H. J. Donahue, "Functional Gap Junctions Between Osteocytic and Osteoblastic Cells," J. Bone Miner. Res., vol. 15, no. 2, pp. 209–217, 2010.
[25] S. Hu, C. Ning, Y. Zhou, L. Chen, K. Lin & J. Chang, "Antibacterial activity of silicate bioceramics," J. Wuhan Univ. Technol. Sci. Ed., vol. 26, no. 2, pp. 226–230, 2011.
[26] R. Brückner, M. Tylkowski, L. Hupa & D. S. Brauer, "Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume," J. Mater. Chem. B, vol. 4, no. 18, pp. 3121–3134, 2016.
[27] M. Tylkowski & D. S. Brauer, "Mixed alkali effects in Bioglass® 45S5," J. Non. Cryst. Solids, vol. 376, pp. 175–181, 2013.
[28] S. Hesaraki, M. Gholami, S. Vazehrad & S. Shahrabi, "The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system," Mater. Sci. Eng. C, vol. 30, no. 3, pp. 383–390, 2010.
[29] X. Lu & Y. Leng, "Theoretical analysis of calcium phosphate precipitation in simulated body fluid," Biomaterials, vol. 26, no. 10, pp. 1097–1108, Apr. 2005.
[30] S. Taherkhani & F. Moztarzadeh, "Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder," J. Sol-Gel Sci. Technol., vol. 78, no. 3, pp. 539–549, 2016.
[31] C. G. Simon, C. A. Khatri, S. A. Wight & F. W. Wang, "Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly (lactide-co-glycolide) microspheres," J. Orthop. Res., vol. 20, no. 3, pp. 473–482, 2002.
[32] P. Valerio, M. M. Pereira, A. M. Goes & M. F. Leite, "The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production," Biomaterials, vol. 25, no. 15, pp. 2941–2948, 2004.
[33] J. Liu, S. C. F. Rawlinson, R. G. Hill & F. Fortune, "Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects," Dent. Mater., vol. 32, no. 3, pp. 412–422, 2016.
_||_