مطالعه خواص فیزیکی و مکانیکی پوشش نانوکامپوزیتی بر پایه پلی کاپرولاکتون-کیتوسان-شیشه زیستفعال S58 محتوی مقادیر مختلف شیشه زیستفعال
محورهای موضوعی : بیوموادمحمدحسین حدادی 1 , ابراهیم کرمیان 2 * , حمیدرضا بخششی راد 3 , مسعود کثیری عسگرانی 4
1 - مرکز تحقیقات مواد پیشرفته، گروه مهندسی مواد، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران.
2 - مرکز تحقیقات مواد پیشرفته، گروه مهندسی مواد، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران.
3 - مرکز تحقیقات مواد پیشرفته، گروه مهندسی مواد، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران.
4 - مرکز تحقیقات مواد پیشرفته، گروه مهندسی مواد، دانشگاه آزاد اسلامی، واحد نجفآباد، نجفآباد، ایران
کلید واژه: پلی کاپرولاکتون, کیتوسان, خواص فیزیکی و مکانیکی, شیشه زیستفعال S58.,
چکیده مقاله :
در این پژوهش، پوشش نانوکامپوزیتی بر پایه پلی کاپورلاکتون-کیتوسان، در حضور مقادیر صفر، یک، سه و پنج درصد وزنی شیشه زیستفعال S58 سنتز شده به روش سل-ژل، تهیه گردید و تاثیر حضور مقادیر مختلف شیشه زیستفعال بر میزان زاویه تماس، جذب آب، زبری سطح، استحکام کششی و رفتار خوردگی آن، توسط مشخصهیابیهای متالورژیکی ارزیابی گردید. طبق نتایج حاصل از آزمونهای زاویه تماس، درصد جذب آب، زبری سطح و استحکام کششی در نمونههای سنتز شده، افزایش آبدوستی با توجه به کاهش زاویه تماس (2/3 و 6/5 درصد)، افزایش جذب آب (14/13 و 21/23 درصد)، افزایش زبری سطح (16/70 و 44/148 درصد) و افزایش استحکام کششی (26/45 و 70/48 درصد) به ترتیب در نمونه PCB3 و PCB5 نسبت به PCB0 گزارش گردید. طبق نتایج طیفسنجی امپدانس الکتروشیمیایی و آزمون پلاریزاسیون خطی نمونه PCB3، افزایش پتانسیل خوردگی پوشش تا 29/0- ولت و کاهش چگالی جریان خوردگی تا 05/2 میکروآمپر بر سانتیمتر مکعب نسبت به سایر نمونهها گزارش شد. بنابراین، طبق نتایج حاصل از پژوهش، حضور مقدار بهینه 3 درصد وزنی شیشه زیستفعال منجر به بهبود خواص فیزیکی و مکانیکی پوشش مورد بررسی از طریق افزایش مقاومت به خوردگی پوشش، کاهش زاویه تماس، افزایش درصد جذب آب، آبدوستی و زبری سطح در نمونه PCB3 گردید.
In this research, nanocomposite coating based on polycaprolactone-chitosan was prepared in the presence of zero, one, three and five weight percent of 58S bioactive glass synthesized by sol-gel method, and the effect of the presence different amounts of bioactive glass were evaluated on contact angle, water absorption, surface roughness, tensile strength and corrosion behavior by metallurgical characterization. According to the results of the contact angle tests, the percentage of water absorption, surface roughness and tensile strength in the synthesized samples, the increase in hydrophilicity due to the decrease in the contact angle (3.2 and 5.6 percent), the increase in water absorption (13.14 and 23.21 percent), an increase in surface roughness (70.16 and 148.44 percent) and an increase in tensile strength (45.26 and 48.70 percent) were reported in PCB3 and PCB5 samples, respectively, compared to PCB0. According to the results of electrochemical impedance spectroscopy and linear polarization test of the PCB3 sample, an increase in the corrosion potential of the coating up to -0.29 V and a decrease in the corrosion current density up to 2.05 microamps per cubic centimeter was reported compared to other samples. Therefore, according to the results of the research, the presence of the optimal amount of 3% by weight of bioactive glass leads to the improvement of the physical and mechanical properties of the investigated coating by increasing the corrosion resistance of the coating, reduction of the contact angle, increasing the percentage of water absorption, hydrophilicity, and surface roughness in The sample was PCB3.
[1] M. M. De Castro, D. R. Lopes & L. V. Dias, "Mg-based composites for biomedical applications", Magnesium Alloys Structure and Properties, vol. 107, doi: 10.5772/intechopen.95079, 2022.
[2] G. D. Cha, D. Kang, J. Lee & D. H. Kim, "Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications", Advanced Healthcare Materials, vol. 8, no. 11, p. 1801660, doi: 10.1002/adhm.201801660, 2019.
[3] R. Venkatesh & H. Kanagasabapathy, "Analysing the characteristics of magnesium based composites for biomedical applications", Materials Today: Proceedings, doi: 10.1016/j.matpr.2023.03.039, 2023.
[4] G. Uppal, A. Thakur, A. Chauhan & S. Bala, "Magnesium based implants for functional bone tissue regeneration–A review", Journal of Magnesium and Alloys, vol. 10, no. 2, pp. 356-386, doi: 10.1016/j.jma.2021.08.017, 2022.
[5] R. M. Pilliar, "Metallic biomaterials", Biomedical Materials, pp. 1-47, doi: 10.1007/978-3-030-49206-9_1, 2021.
[6] M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau L. Berzina-Cimdina, "Biodegradable materials and metallic implants—a review", Journal of Functional Biomaterials, vol. 8, no. 4, p. 44, doi: 10.3390/jfb8040044, 2017.
[7] N. O. Joy-anne, Y. Su, X. Lu, P. H. Kuo, J. Du & D. Zhu, "Bioactive glass coatings on metallic implants for biomedical applications", Bioactive Materials, vol. 1, no. 4, pp. 261-270, doi: 10.1016/j.bioactmat.2019.09.002, 2019.
[8] H. Hornberger, S. Virtanen & A. R. Boccaccini, "Biomedical coatings on magnesium alloys–a review", Acta Biomaterialia, vol. 8, no. 7, pp. 2442-2455, doi: 10.1016/j.actbio.2012.04.012, 2012.
[9] M. A. Woodruff & D. W. Hutmacher, "The return of a forgotten polymer—Polycaprolactone in the 21st century", Progress in Polymer Science, vol. 35, no. 10, pp. 1217-1257, doi: 10.1016/j.progpolymsci.2010.04.002, 2010.
[10] M. Labet & W. Thielemans, "Synthesis of polycaprolactone: a review", Chemical Society Reviews, vol. 38, no. 12, pp. 3484-3504, doi: 10.1039/B820162P, 2009.
[11] A. Usman, K. M. Zia, M. Zuber, S. Tabasum, S. Rehman & F. Zia, "Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications", International Journal of Biological Macromolecules, vol. 1, no. 86, pp. 630-645, doi: 10.1016/j.ijbiomac.2016.02.004, 2016.
[12] M. E. Abd El-Hack, M. T. El-Saadony, M. E. Shafi, N. M. Zabermawi, M. Arif, G. E. Batiha, A. F. Khafaga, Y. M. Abd El-Hakim & A. A. Al-Sagheer, "Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review", International Journal of Biological Macromolecules, vol. 1, no. 164, pp. 2726-2744, doi: 10.1016/j.ijbiomac.2020.08.153, 2020.
[13] G. Crini, "Historical review on chitin and chitosan biopolymers", Environmental Chemistry Letters, vol. 17, no. 4, pp. 1623-1643, doi: 10.1007/s10311-019-00901-0, 2019.
[14] D. Wang & G. P. Bierwagen, "Sol–gel coatings on metals for corrosion protection", Progress in Organic Coatings, vol. 64, no. 4, pp. 327-338, doi: 10.1016/j.porgcoat.2008.08.010, 2009.
[15] J. Puetz & M. A. Aegerter, "Dip coating technique", Sol-Gel Technologies for Glass Producers and Users, pp. 37-48, doi: 10.1007/978-0-387-88953-5_3, 2004.
[16] D. Shekhawat, A. Singh, M. K. Banerjee, T. Singh & A. Patnaik, "Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties". Ceramics International, vol. 47, no. 3, pp. 3013-3030, doi: 10.1016/j.ceramint.2020.09.214, 2021.
[17] H. Gul, M. Khan & A. S. Khan, "Bioceramics: Types and clinical applications. In Handbook of Ionic Substituted Hydroxyapatites", Woodhead Publishing, pp. 53-83doi: 10.1016/B978-0-08-102834-6.00003-3, 2020.
[18] F. Soleimani & R. Emadi, "Evaluation of Bioactivity and Corrosion Behavior of AZ91 Alloy with Polymer/Ceramic Composite Coating", Advanced Materials in Engineering, vol. 38, no. 3, doi: 10.47176/JAME.38.3.20201, 2019.
[19] Z. Ahmadi & F. Moztarzadeh, "Synthesizing and characterizing of gelatin-chitosan-bioactive glass (58s) scaffolds for bone tissue engineering", Silicon, vol. 10, pp. 1393-1402, doi: 10.1007/s12633-017-9616-z, 2018.
[20] A. Shahin-Shamsabadi, A. Hashemi, M. Tahriri, F. Bastami, M. Salehi & F. M. Abbas, "Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity", Materials Science and Engineering C, vol. 1, no. 90, pp. 280-288, doi: 10.1016/j.msec.2018.04.080, 2018.
[21] M. Mehdipour & A. Afshar, "A study of the electrophoretic deposition of bioactive glass–chitosan composite coating", Ceramics International, vol. 38, no. 1, pp. 471-476, doi: 10.1016/j.ceramint.2011.07.029, 2012.
[22] A. S. Kiran, A. Kizhakeyil, R. Ramalingam, N. K. Verma, R. Lakshminarayanan, T. S. Kumar, M. Doble & S. Ramakrishna, "Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections", Ceramics International, vol. 45, no. 15, pp. 18710-18720, doi: 10.1016/j.ceramint.2019.06.097, 2019.
[23] A. Zomorodian, C. Santos, M. J. Carmezim, T. M. eSilva, J. C. Fernandes & M. D. Montemor, "In-vitro corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin", Electrochimica Acta, vol. 179, pp. 431-440, doi: 10.1016/j.electacta.2015.04.013, 2015.
[24] E. Motalebzadeh, S. Hemati, M. A. Mayvani & M. Ghollasi, "Employing novel biocompatible composite scaffolds with bioglass 58S and poly L-lactic acid for effective bone defect treatment", Molecular Biology Reports, vol. 51, no. 1, p. 838. doi: 10.1007/s11033-024-09763-4, 2024.
[25] A. B. D. Nandiyanto, R. Oktiani & R. Ragadhita, "How to read and interpret ftir spectroscope of organic material", Indonesian Journal of Science and Technology, vol. 4, pp. 97–118, doi: 10.17509/ijost.v4i1.15806, 2019.
[26] M. Aflori, D. Serbezeanu, A. M. Ipate, A. M. Dobos & D. Rusu, "Development of New Polyimide/Spirulina Hybrid Materials: Preparation and Characterization", Journal of Composites Science, vol. 8, no. 5, p. 178, doi: 10.3390/jcs8050178, 2024.
[27] M. R. Foroughi, S. Karbasi, M. Khoroushi & A. A. Khademi, "Polyhydroxybutyrate/ chitosan/ bioglass nanocomposite as a novel electrospun scaffold: Fabrication and characterization", Journal of Porous Materials, vol. 24, p. 1447-60, doi: 10.1007/s10934-017-0385-2, 2017.
[28] A. M. Deliormanlı & R. Konyalı, "Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering", Journal of the Australian Ceramic Society, vol. 55, no. 1, pp. 247-256, doi: 10.1007/s41779-018-0229-9, 2019.
[29] M. Dziadek, K. Dziadek, K. Checinska, B. Zagrajczuk, M. Golda-Cepa, M. Brzychczy-Wloch, E. Menaszek, A. Kopec & K. Cholewa-Kowalska, "PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation", Bioactive Materials, vol. 6, no. 6, pp. 1811-1826, doi: 10.1016/j.bioactmat.2020.11.025, 2021.
[30] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu & C. Han, "Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering", Biomaterials, vol. 24, no. 26, pp. 4833-4841. doi: 10.1016/S0142-9612(03)00374-0, 2003.
[31] L. D. Pozzo, T. F. da Conceição, A. Spinelli, N. Scharnagl & A. T. Pires, "Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets", Carbohydrate polymers, vol. 181, pp. 71-77, doi: 10.1016/j.carbpol.2017.10.055, 2018.
[32] L. Y. Cui, X. U. Ji, L. U. Na, R. C. Zeng, Y. H. Zou, S. Q. Li & F. Zhang, "In vitro corrosion resistance and antibacterial properties of layer-by-layer assembled chitosan/poly-L-glutamic acid coating on AZ31 magnesium alloys", Transactions of Nonferrous Metals Society of China, vol. 27, no. 5, pp. 1081-1086, doi: 10.1016/S1003-6326(17)60126-2, 2017.
[33] F. Soleymani, R. Emadi, S. Sadeghzade & F. Tavangarian, "Applying baghdadite/PCL/chitosan nanocomposite coating on AZ91 magnesium alloy to improve corrosion behavior, bioactivity, and biodegradability", Coatings, vol. 9, no. 12, p. 789, doi: 10.3390/coatings9120789, 2019.
[34] E. B. Toloue, M. Mohammadalipour, S. Mukherjee & S. Karbasi, "Ultra-thin electrospun nanocomposite scaffold of poly (3-hydroxybutyrate)-chitosan/magnetic mesoporous bioactive glasses for bone tissue engineering applications", International Journal of Biological Macromolecules, vol. 254, p. 127860, doi: 10.1016/j.ijbiomac.2023.127860, 2024.
[35] K. Ginjupalli & N. P. Upadhya, "Surface roughness of implants: A review", Trends in Biomaterials and Artificial Organs, vol. 25, no. 3, pp. 112-118, 2011.
[36] X. Chen, A. Nouri, Y. Li, J. Lin, P. D. Hodgson & C. E. Wen, "Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid", Biotechnology and Bioengineering, vol. 101, no. 2, pp. 378-387, doi: 10.1002/bit.21900, 2008.
[37] S. Heise, M. Höhlinger, Y. T. Hernández, J. J. Palacio, J. A. Ortiz, V. Wagener, S. Virtanen & A. R. Boccaccini, "Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates", Electrochimica Acta, vol. 232, pp. 456-464, doi: 10.1016/j.electacta.2017.02.081, 2017.
[38] A. M. Abd El-Aziz, A. Abd El-Fattah, A. El-Maghraby, D. A. Ghareeb & S. Kandil, "Viscoelasticity, mechanical properties, and in vitro bioactivity of gelatin/borosilicate bioactive glass nanocomposite hydrogels as potential scaffolds for bone regeneration", Polymers, vol. 13, no. 12, p. 2014, doi: 10.3390/polym13122014, 2021.
[39] A. K. Gaharwar, C. P. Rivera, C. J. Wu & G. Schmidt, "Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles", Acta Biomaterialia, vol. 7, no. 12, pp. 4139-4148, doi: 10.1016/j.actbio.2011.07.023, 2011.
[40] A. R. Shahmoradi, N. Talebibahmanbigloo, C. Nickhil, R. Nisha, A. A. Javidparvar, P. Ghahremani, G. Bahlakeh & B. Ramezanzadeh, "Molecular-MD/atomic-DFT theoretical and experimental studies on the quince seed extract corrosion inhibition performance on the acidic-solution attack of mild-steel", Journal of Molecular Liquids, vol. 346, p. 117921, doi: 10.1016/j.molliq.2021.117921, 2022.
[41] A. A. Javidparvar, R. Naderi & B. Ramezanzadeh, "Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection", Composites Part B: Engineering, vol. 172, pp. 363-375, doi: 10.1016/j.compositesb.2019.05.055, 2019.
[42] F. Mansfeld & B. Little, "A technical review of electrochemical techniques applied to microbiologically influenced corrosion", Corrosion Science, vol. 32, no. 3, pp. 247-272, doi: 10.1016/0010-938X(91)90072-W, 1991.
[43] A. Zacharopoulou, E. Zacharopoulou & G. Batis, "Protection systems for reinforced concrete with corrosion inhibitors". Open Journal of Metal, vol. 4, pp. 86-92, doi: 10.4236/ojmetal.2014.44010, 2014.
[44] S. Pour-Ali, C. Dehghanian & A. Kosari, "Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating", Corrosion Science, vol. 90, pp. 239-247, doi: 10.1016/j.corsci.2014.10.015, 2015.
[45] A. Dehghani, G. Bahlakeh & B. Ramezanzadeh "Designing a novel targeted-release nano-container based on the silanized graphene oxide decorated with cerium acetylacetonate loaded beta-cyclodextrin (β-CD-CeA-MGO) for epoxy anti-corrosion coating", Chemical Engineering Journal, vol. 400, p. 125860. doi: 10.1016/j.cej.2020.125860, 2020.
[46] ح. اسماعیلی، س. نقیبی و ش. کردزنگنه، "پوشش¬دهی فولاد با رزین آلکیدی بلند تقویت شده با نانوذرات سیلیکون کاربید بهمنظور ارتقای مقاومت به خوردگی"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 2، صفحه 134-123، 1396.