خاصیتِ بی.اس.ایی.ِ تکمیلِ جبر فوریه در فضای ضربگرهایش
محورهای موضوعی : آمار
1 - استادیار گروه ریاضی و آمار، دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبدکاووس، گلستان، ایران
کلید واژه: BSE property, Locally compact group, Banach Algebra, Multiplier algebra, Fourier algebra,
چکیده مقاله :
برای گروه موضعاً فشردهی G، فرض کنیم A(G) جبر فوریه و A_M (G) نشاندهندهی تکمیل این جبر در فضای ضربگرهایش است. در این مقاله نشان میدهیم که A(G) یک جبرِ سگالِ مجرد در A_M (G) است. سپس یک شرط لازم و کافی برای تساوی دو جبر A(G) و A_M (G) را ارائه میدهیم. همچنین ثابت میکنیم که A_M (G) یک ایدهال در دوگان دومش است اگروتنهااگر G گسسته باشد. نشان خواهیم داد که اگر G یک گروه گسسته باشد، آنگاه A_M (G) یک جبر بی.اس.ایی. است اگروتنهااگر G، M-میانگینپذیر ضعیف باشد. بهعنوان یک نتیجه ثابت خواهد شد که A_M (F_2 ) برخلاف A(F_2 ) یک جبر بی.اس.ایی. است. در پایان مطالعهی مشابهی روی جبر لبگ-فوریه انجام میشود و همچنین یک اثبات کاملاً جدید از تساوی فضای کاراکتری جبر فوریه و تکمیل شدهاش ارائه میگردد که مبتنی بر خواص ضربگرهاست. کلمات کلیدی: جبر باناخ، جبر فوریه، فضای ضربگر، خاصیت بی.اس.ایی.، گروه موضعاً فشرده.
For a locally compact group G, let A(G) be the Fourier algebra and let A_M (G) be the completion of this algebra in its multiplier algebra. In this paper, we show that A(G) is an abstract Segal algebra in A_M (G). Also, a necessary and sufficient condition for equality of these two algebras is given. Then we prove that A_M (G) is an ideal in its second dual if and only if G is discrete. We show that if G is a discrete group, then A_M (G) is a BSE algebra if and only if G is M-weakly amenable. As a corollary, it is proven that A_M (F_2 ) is a BSE algebra while A(F_2 ) is not. Finally, we examine our results for the Lebasque-Fourier algebra and also give a completely new proof for equality of the character space of A(G) and A_M (G).Keywords: Banach algebra, Fourier algebra, Multiplier algebra, BSE property, Locally compact group.
[1]. J. T. Burnham, Closed ideals in subalgebras of Banach algebras I, Proc. Amer. Math. Soc. 32 (1972), 551--555.
[2]: J. Duncan and S.A.R. Hosseiniun, The second dual of a Banach algebra. Proc. R. Soc. Edinb. Sect. 84, (1979),
309--325.
[3]: J. de Canniere and U. Haagerup,
Multipliers of the Fourier algebras of some simple lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), 455--500.
[4]: P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92, (1964), 181--236.
[5]: M. Fozouni and M. Nemati, BSE property for some certain Segal and Banach algebras, Mediter. J. Math. 16 (2019), no. 2, 1--14.
[6]: B. E. Forrest, Arens regularity and discrete groups, Pacific J. Math. (1991), no. 151, 217--227.
[7]: B. Forrest, Some Banach algebras without discontinuous derivations, Proc. Amer. Math. Soc. 114 (1992), no.4, 965--970.
[8]: M. Fozouni, On character space of the algebra of BSE-functions, Sahand Comminucations in Mathematical Analysis, Vol. 12 (2018), Iss. 1, 187--194.
[9]: E. E. Granirer, On some spaces of linear functionals on the algebras for locally compact groups, Colloquium Mathematicae 52 (1987), no. 1, 119--132 (eng).
[10]: Z. Kamali and M. L. Bami, Bochner-Schoenberg-Eberlein property for abstract Segal algebras, Proc. Japan Acad., 89, Ser. A (2013), 107—110.
[11]: Z. Kamali and M. L. Bami, The Bochner–Schoenberg–Eberlein property for . J. Fourier Anal. Appl. 20(2), (2014), 225--233.
[12]: E. Kaniuth and A. T.-M. Lau, Fourier and Fourier- Stieltjes Algebras on
Locally Compact Groups, American Mathematical Society, 2018.
[13]: E. Kaniuth and A. lger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier Stieltjes algebras, Trans. Amer. Math. Soc. 362 (2010),
4331--4356.
[14]: V. Runde, Lectures on Amenability, Springer-Verlag Berlin Heidelberg, 2002.
[15]: V. Runde, (non-)amenability of the Fourier algebra in the cb-multiplier norm, arXiv:1904.03252.
[16]: S.-E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proc. Amer. Math. Soc. 110 (1990), 149--158.
[17]: F. Ghahramani and A. T-M. Lau, Weak amenability of certain classes of Banach algebras without bounded approximate identities, Math. Proc. Camb. Phil. Soc. 133 (2002), no. 357, 357–371.