Minimal continuous multifunctions
Subject Areas : General topologyİ. Zorlutuna 1 * , S. Atmaca 2 , N. O. Diri 3
1 - Sivas Cumhuriyet University, Turkey
2 - Sivas Cumhuriyet University, Turkey
3 - Sivas Cumhuriyet University, Turkey
Keywords: multifunction, Continuity, minimal open set, Alexandroff space,
Abstract :
In this paper, we introduce a new strong form of the continuity of multifunctions with the help of minimal open sets. We give some characterizations for this new continuity and investigate fundamental properties of it. Additionally, we use this type of multifunctions to characterize Alexandroff spaces.
[1] M. Akdag, F. Erol, Upper and lower α(µX,µY)-continuous multifunctions, J. Linear. Topol. Algebra. 4 (1) (2015), 1-9.
[2] P. Alexandroff, Diskrete Raume, Mat. Sbornik. 2 (1937), 501-519.
[3] H. T. Banks, M. Q. Jacobs, A differential calculus for multifunctions, J. Math. Anal. Appl. 29 (1970), 246-272.
[4] C. Berge, Espaces Topologiques, Fonctions Multivoques, Dunod, Paris, 1959.
[5] T. F. Bridgland, Trajectory integrals of the set valued functions, Pacific J. Math. 33 (1970), 43-67.
[6] C. Carpintero, E. Rosas, M. Salas-Brown, J. Sanabria, Minimal open sets on generalized topological space, Proyecciones (Antofagasta). 36 (4) (2017), 739-751.
[7] G. Choquet, Convergences, Annales de Universite de Grenoble. 23 (1947-1948), 55-112.
[8] Ö. Deger, On the solvability of an inequality system via polyhedral convex set-valued mappings, Int. J. Adv. Eng. Pure Sci. 32 (4) (2020), 494-498.
[9] F. S. De Blasi, On the differentiability of multifunctions, Pacific J. Math. 66 (1976), 67-81.
[10] S. Eilenberg, D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 222-244.
[11] H. Hahn, Reele Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1932.
[12] M. H. Harbau, B. Ali, Hybrid linesearch algorithm for pseudomonotone equilibrium problem and fixed points of Bregman quasi asymptotically nonexpansive multivalued mappings, J. Linear. Topol. Algebra. 10 (2) (2021), 153-177.
[13] F. Hausdorff, Mengenlehre, Berlin: De Gruyter. English translation: Set Theory, Chelsea, New York, 1962.
[14] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, The Netherlands, 2000.
[15] M. Q. Jacops, Measurable multivalued mappings and Lusin’s theorem, Trans. Amer. Math. Soc. 143 (1968), 471-481.
[16] S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J. 8 (3) (1941), 457-459.
[17] Y. Kücük, On strongly θ−continuousness and almost strongly θ-continuousness of multifunctions, Pure. Appl. Math. Sci. 40 (1-2) (1994), 43-54.
[18] C. Kuratowski, Les fonctions semi-continues dans l’espace des ensembles fermes, Fund. Math. 18 (1) (1932),
148-159.
[19] C. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1) (1930), 301-309.
[20] A. Lechicki, On continuous and measurable multifunctions, Comment. Math. 21 (1979), 141-156.
[21] F. Nakaoka, N. Oda, Minimal closed sets and maximal closed sets, Int. J. Math. Math. Sci. (2006), 1-8.
[22] F. Nakaoka, N. Oda, Some applications of minimal open sets, Int. J. Math. Math. Sci. 27 (8) (2001), 471-476.
[23] T. Noiri, V. Popa, Almost weakly continuous multifunctions, Demonstratio Math. 26 (2) (1993), 363-380.
[24] T. Noiri, V. Popa, On m-I-continuous multifunctions, Eur. J. Pure. Appl. Math. 15 (1) (2022), 1-14.
[25] T. Noiri, V. Popa, On upper and lower M-continuous multifunctions, Filomat. (2000), 73-86.
[26] V. Popa, Multifunctii tari continue (Strongly continuous multlfunctions), Bul. St. Tehn. Inst. Politehn. ”T. Vuia”. Timi¸ soara. Matem. Fiz. 27 (41) (1982), 5-7.
[27] V. Popa, On certain properties of quasi continuous and almost continuous multifunctions, Stud. Cere. Mat. 30 (1978), 441-446.
[28] V. Popa, Weakly continuous multifunctions, Boll. Un. Mat. Ital. (5) (15-A) (1978), 379-388.
[29] L. Ratner, Multivalued Transformations, University of California, 1949.
[30] E. Rosas, C. Carpintero, J. Sanabria, J. Vielma, Characterizations of upper and lower (α,β,θ,δ,I)-continuous multifunctions, Mat. Stud. 55 (2) (2021), 206-213.
[31] R. E. Smithson, Multifunctions, Nieuw Archief Voor Wiskunde. 20 (3) (1972), 31-53.
[32] T. Speer, A Short Study of Alexandroff Spaces, arXiv:0708.2136, 2007.
[33] W. L. Stroter, Continuous multivalued functions, Boletim do Sociedade de S. Paulo. 10 (1955), 87-120.
[34] W. L. Stroter, Multi-homotopy, Duke Math. J. 22 (2) (1955), 281-285.
[35] L. Vietoris, Kontinua zweiter ordnung, Monatsh Math. Phys. 33 (1923), 49-62.
[36] L. Vietoris, Uber den hoheren Zusammenhang kompakter Raume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927), 454-472.
[37] A. D. Wallace, A fixed point theorem for trees, Bull. Amer. Math. Soc. 47 (1941), 757-760.
[38] D. Wine, Locally paracompact spaces, Glasnik Mat. 10 (30) (1975), 351-357.
[39] I. Zorlutuna, Soft set-valued mappings and their application in decision making problems, Filomat. 35 (5) (2021), 1725-1733.
[40] I. Zorlutuna, ω-continuous multifunctions, Filomat. 27 (1) (2013), 165-172.