
Journal of Linear and Topological Algebra
Vol. 12, No. 03, 2023, 153- 161
DOR: 20.1001.1.22520201.2023.12.03.1.3
DOI: 10.30495/JLTA.2023.704474

Minimal continuous multifunctions
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Abstract. In this paper, we introduce a new strong form of the continuity of multifunctions
with the help of minimal open sets. We give some characterizations for this new continuity
and investigate fundamental properties of it. Additionally, we use this type of multifunctions
to characterize Alexandroff spaces.
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1. introduction

The importance of multifunctions or set-valued functions, which are applied in many
different fields from social sciences to physical and biological sciences, was understood at
the beginning of the 20th century and various results had been obtained on this subject
by many leading mathematicians such as Hausdorff [13], Vietoris [35, 36], Hahn [11]
and Kuratowski [18, 19]. However, systematic studies emerged in the 1960s due to the
need for applied fields such as control theory and mathematical economics. In this period,
the concepts of continuity, differentiability, measurability, integrability, homotopicity and
fixed point for multifunctions have been studied by different researchers (see [3, 5, 9, 10,
15, 16, 20, 33, 34]).

Today, multifunctions and multi-valued analysis appear as important topics in mathe-
matics on their own. Additionally, multifunctions are an important tool that can be used
in solving problems encountered in studies in many fields of science (see [14]). For ex-
ample, problems that arise in nonlinear analysis, nonlinear programming, mathematical
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economics and business, optimal control theory, biology, artificial intelligence and many
other research fields can be solved by set-valued transformations and their theories [8].

The concept of continuity for multifunctions, which will be discussed in this study, first
mentioned by Wallace [37] in 1941. In 1946, Eilenberg and Montgomery [10] proved a
fixed point theorem for multifunctions. Later, different definitions of continuity for multi-
functions was given by different researchers (e.g. [7, 29]). In 1955, Stroter [33] and in 1979,
Lechicki [20] examined the relations between the definitions of continuity given before
them and investigated their equivalence. The definition of continuity of multifunction
used today was proposed by Smithson [31] using Berge’s [4] notations.

After this definition of continuity for multifunctions, many kinds of continuity existing
in the literature for single-valued functions has been extended to the setting of multi-
functions. The relationships between multifunctions which have these new continuities
and continuous multifunctions were examined and the topological properties preserved
by these new classes of multifunctions were emphasized (e.g [1, 17, 25–28, 40]). To-
day, studies on multifunctions and their applications are still continuing intensively (e.g
[8, 12, 24, 30, 39]).

The concepts of minimal open sets and maximal closed sets in topological spaces were
introduced and considered by Nakaoka and Oda in [21, 22]. More precisely, in 2001,
Nakaoka and Oda [22] characterized the notions of minimal open sets and proved that
any subset of a minimal open set is preopen. Also, as an application of a theory of
minimal open sets, they obtained a sufficient condition for a locally finite space to be a
pre-Hausdorff space. Recently, Carpintero et al [6] introduced the notion of minimal open
set in a generalized topological space (X,µ) and investigated some of their fundamental
properties and proved that any subset of a minimal open set on a GTS (X,µ) is a
µ-preopen set.

In this study, we introduce a new strong form of continuity of multifunctions, called
minimal continuity by using minimal open sets. We give some characterizations for this
new kind of continuity and examine the properties of this new class of functions. In addi-
tion, Alexandroff spaces have been tried to be characterized by using minimal continuous
multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. A nonempty open set A of X is said to be a minimal open set if any open set
which is contained in A is ∅ or A. By a multifunction F : X ⇒ Y , we mean a point-to-set
correspondence from X into Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For
a multifunction, F : X ⇒ Y , the upper and lower inverse of any subset B of Y , denoted
by F+(B) and F−(B) respectively, are the subsets F+(B) = {x ∈ X : F (x) ⊆ B} and
F−(B) = {x ∈ X : F (x) ∩ B ̸= ∅}. In particular, F−(y) = {x ∈ X : y ∈ F (x)} for each
y ∈ Y , and the image of an A ⊆ X under F is F (A) = ∪{F (x) : x ∈ A}. Note that
X − F+(B) = F−(Y − B) for each B ⊆ Y . A multifunction F : (X, τ) ⇒ (Y, σ) is said
to be upper semi continuous [4], abbreviated as u.s.c., (resp. lower semi continuous [4] or
l.s.c.) at x ∈ X if for each open V ⊆ Y with F (x) ⊆ V (resp. F (x) ∩ V ̸= ∅), there is an
open neighbourhood U of x such that F (U) ⊆ V (resp. F (z) ∩ V ̸= ∅ for all z ∈ U). F
is u.s.c. (resp. l.s.c.) iff it is u.s.c. (resp. l.s.c.) at each point of X. Then F is called semi
continuous iff it is both u.s.c.and l.s.c. For each x ∈ X, if F (x) is a compact (closed) set,
then F is called point compact (closed) multifunction (see [4, 31]).
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3. Minimal continuous multifunctions

Definition 3.1 A multifunction F : (X, τ) ⇒ (Y, σ) is said to be:
(i) upper minimal continuous (briefly, u.m.c.) at a point x ∈ X if for each open set V of

Y containing F (x), there exists a minimal open neigborhood U of x such that F (U) ⊆ V .
(ii) lower minimal continuous (briefly, l.m.c.) at a point x ∈ X if for each open set V

of Y that satisfies F (x) ∩ V ̸= ∅, there exists a minimal open neigborhood U of x such
that F (z) ∩ V ̸= ∅ for all z ∈ U .

(iii) upper (lower) minimal continuous if F has this property at each point of X.

Example 3.2 Let Y = R with the usual topology τU and X = {a, b, c} with the topology
τ = {∅, X, {a} , {b, c}}. Define a multifunction F : (X, τ) ⇒ (R, τU ) by F (a) = (0, 1),
F (b) = F (c) = (0,+∞). Then F is u.m.c. and l.m.c.

Remark 1 It is clear from the definitions that upper (resp. lower) minimal continuous
multifunctions are upper (resp. lower) semi continuous. The following examples show
that the inverses of these requirements are not generally true.

Example 3.3 Let X = {a, b, c} and Y = {1, 2, 3}. Define a topology τ =
{∅, X, {a} , {a, b}} on X and a topology σ = {∅, Y, {1, 2}} on Y . Let F : X ⇒ Y be
a multifunction defined by F (a) = {1, 2}, F (b) = {2}, F (c) = Y . Then F is u(l).s.c.,
but it is not u(l).m.c.

Proposition 3.4 Let F : (X, τ) ⇒ (Y, σ) be a multifunction.
(1) If F+ (V ) is a minimal open in X for every V ∈ σ, then F is u.m.c.
(2) If F− (V ) is a minimal open in X for every V ∈ σ, then F is l.m.c.

The inverses of these requirements are generally not true, as will be seen in the following
example.

Example 3.5 Let’s consider Example 3.2. We know that F is u(l).m.c., but for the open
set V = (0,+∞), neither F+(V ) = X nor F−(V ) = X are minimal open sets.

Definition 3.6 [2] Let X be a topological space. Then X is an Alexandroff space if
arbitrary intersections of open sets are open.

It is noted in [32] that the original definition given for an Alexandroff space is easy
to state, however it is not too useful for proving theorems about Alexandroff spaces. In
addition, they used a different but equivalent definition to fix this. So, in an Alexandroff
space, every point must have a minimal open set containing it.

Theorem 3.7 [32] X is an Alexandroff space iff each point in X has a minimal open
neighborhood (briefly nbd).

Theorem 3.8 LetX be an Alexandroff space, x ∈ X and F : X ⇒ Y be a multifunction.
If F is u(l).s.c. at x, then it is u(l).m.c. at x.

Proof. We will only prove for u.s.c. The other can be done in a similar way. Let F : X ⇒
Y be an u.s.c multifunction and x ∈ X. Let us take an arbitrary open set V ⊆ Y satisfying
the condition F (x) ⊆ V . Since F is u.s.c, there is an open set U with x ∈ U ⊆ F+(V ).
On the other hand, since X is an Alexandroff space, the point x has a minimal open
neighborhood W and then W ⊆ U . Therefore, we find the minimal open set W with
x ∈ W ⊆ F+(V ), which shows that F is u.m.c. at x ∈ X. ■
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Corollary 3.9 Let X be an Alexandroff space. Then a multifunction F : X ⇒ Y is
u(l).m.c. iff F is u(l).s.c.

Corollary 3.10 Let X be any topological space. Then the multifunction F : X ⇒ X,
F (x) = {x} is u(l).m.c. iff X is Alexandroff space.

Proof. (⇒) It is obvious.
(⇐) Since F : X ⇒ X, F (x) = {x} is u(l).s.c., it is a corollary of Theorem 3.8. ■

Theorem 3.11 A multifunction F : X ⇒ Y is u.m.c. at x ∈ X iff for every closed set
K ⊆ Y satisfying the condition F (x) ∩K = ∅, there exists a minimal open nbd U of x
such that U ∩ F− (K) = ∅.

Proof. (⇒) Let K be a closed set with F (x) ∩K = ∅. Then Y −K is an open set and
F (x) ⊆ Y − K. Since F is u.m.c., there exists a minimal open nbd U of x such that
U ⊆ F+ (Y −K). Therefore, we have U ⊆ X − F− (K) and so U ∩ F− (K) = ∅. This
completes the proof.

(⇐) Let V be an open set with F (x) ⊆ V . Then Y − V is a closed set and F (x) ∩
(Y − V ) = ∅. From the hypothesis, we have a minimal open nbd U of x such that
U ∩F− (Y − V ) = ∅. Hence, U ∩ (X − F+ (V )) = ∅ and so U ⊆ F+ (V ). This shows that
F is u.m.c. at x. ■

Theorem 3.12 A multifunction F : X ⇒ Y is l.m.c. at x ∈ X iff for every closed set
K ⊆ Y satisfying the condition x /∈ F+(K), there exists a minimal open nbd U of x such
that U ∩ F+ (K) = ∅.

Proof. It is similar to that of upper theorem. ■

4. Some properties of minimal continuous multifunctions

Let F : X ⇒ Y and G : Y ⇒ Z be two multifunctions. In this case, for each V ⊆
Z, (G ◦ F )+(V ) = F+(G+(V )) and (G ◦ F )−(V ) = F−(G−(V )) where G ◦ F is the
composition of F and G.

Theorem 4.1 If the multifunctions F : X ⇒ Y and G : Y ⇒ Z are u(l).m.c., then the
multifunction G ◦ F : X ⇒ Z is u(l).m.c.

Proof. We prove only for the case of upper minimal continuity, the other is similar.
Let x ∈ X, W be an open set in Z with (G ◦ F ) (x) ⊆ W . Since G is u.m.c., there
exists a minimal open nbd Vy of y ∈ F (x) such that Vy ⊆ G+ (W ) for each y ∈ F (x).
Then

∪
y∈F (x)

Vy is an open set in Y and F (x) ⊆
∪

y∈F (x)

Vy. By u.m.c. of F , we obtain

a minimal open nbd U of x such that U ⊆ F+

( ∪
y∈F (x)

Vy

)
. Therefore, we have U ⊆

F+

( ∪
y∈F (x)

Vy

)
⊆ F+ (G+ (W )) = (G ◦ F )+ (W ). This shows that G ◦ F is u.m.c. at

x ∈ X. ■

Theorem 4.2 If the multifunction F : X ⇒ Y is u(l).m.c. and G : Y ⇒ Z is u(l).s.c.,
then the multifunction G ◦ F : X ⇒ Z is u(l).m.c.

Proof. Let x ∈ X, W be an open set in Z with (G ◦ F ) (x) ∩W ̸= ∅. Since G is l.s.c.,
G− (W ) is an open set in Y and F (x) ∩ G− (W ) ̸= ∅. Since F is l.m.c, there exist a
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minimal open nbd U of x such that U ⊆ F− (G− (W )) = (G ◦ F )− (W ). This shows that
G ◦ F is l.m.c. at x ∈ X. The proof of the other case can be done in a similar way. ■

Proposition 4.3 [32] If U is minimal open in the space X and A ⊆ X, then U ∩ A is
minimal open in the subspace A.

Proposition 4.4 Let X be a topological space and A ⊆ X. If A is an open set in X
and W is a minimal open set in the subspace A, then W is minimal open in X.

Proof. If we assume that W is not minimal open in the space X, then there exists a
nonempty open set U such that U ⊊ W . But, in this case ∅ ̸= U ∩A ⊊ W ∩A = W and
U ∩A is an open in A. This contradicts with the minimal openness of W in the subspace
A. ■

Theorem 4.5 If F : X ⇒ Y is u(l).m.c. and A ⊆ X, then F |A: A ⇒ Y is u(l).m.c.

The proof is obvious from the above Proposition 4.3 and we omit it.

Theorem 4.6 Let {Aα : α ∈ I} be open cover of X. Then a multifunction F : X ⇒ Y
is u(l).m.c. iff the restrictions F |Aα

: Aα ⇒ Y are u(l).m.c. for every α ∈ I.

Proof. (⇒) Theorem 4.5.
(⇐) We prove for the lower minimal continuity. The other is analogous. Let x ∈ X

and V be any open set with F (x) ∩ V ̸= ∅. Since {Aα : α ∈ Λ} is a cover of X, there
exists an α0 ∈ Λ such that x ∈ Aα0

. By hypothesis, there exists a minimal open nbd U

of x in Aα0
such that U ⊆

(
F |Aα0

)−
(V ). Then U is a minimal open nbd of x in X from

Proposition 4.4. Moreover, since U ⊆
(
F |Aα0

)−
(V ) ⊆ F− (V ), we have that F is l.m.c.

at x. ■

Theorem 4.7 If the multifunction F : X ⇒ Y is u.m.c. and Y is a normal space, then
the multifunction F : X ⇒ Y, F (x) = F (x) is u.m.c.

Proof. Let x ∈ X and V be any open set with F (x) ⊆ V . Since Y is normal, there

exits an open set G such that F (x) ⊆ G ⊆ G ⊆ V . Then we have F (x) ⊆ G. Since F is
u.m.c., there exists a minimal open nbd U of x such that F (U) ⊆ G. Therefore, we have

F (U) ⊆ G ⊆ V and this shows that F is u.m.c. ■

The following example shows that the converse of upper theorem is not necessarily
true.

Example 4.8 Let Y = R with the cofinite topology τc and let X = {a, b, c} with
the topology τ = {∅, X, {a} , {b, c}}. Define a multifunction F : (X, τ) ⇒ (R, τc) by
F (a) = R−{1}, F (b) = R−{2}, F (c) = R−{3}. Then F is u.m.c., but F is not u.m.c.

Theorem 4.9 A multifunction F : X ⇒ Y is l.m.c. iff F : X ⇒ Y , F (x) = F (x) is
l.m.c.

Proof. Let x ∈ X and V be any open set with F (x)∩V ̸= ∅. Then F (x)∩V ̸= ∅ since
V is open. By the hypothesis, there exists a minimal open nbd U of x such that z ∈ U
implies F (z) ∩ V ̸= ∅. and so F (z) ∩ V ̸= ∅. This shows that F is l.m.c.

Conversely, If x ∈ X and V is an open set which satisfies F (x)∩V ̸= ∅, then F (x)∩V ̸=
∅. By the hypothesis, there exists a minimal open nbd U of x such that z ∈ U implies
F (z) ∩ V ̸= ∅ and so F (z) ∩ V ̸= ∅ because V is open. This shows that F is l.m.c. ■

Theorem 4.10 If the multifunctions F1 : X ⇒ Y and F2 : X ⇒ Y are u(l).m.c., then
the multifunction F1 ∪ F2 : X ⇒ Y , (F1 ∪ F2) (x) = F1 (x) ∪ F2 (x) is u(l).m.c.
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Proof. We first prove for upper minimal continuity. If x ∈ X and V is an open set
with (F1 ∪ F2) (x) = F1 (x) ∪ F2 (x) ⊆ V , then F1 (x) ⊆ V and F2 (x) ⊆ V . By upper
minimal continuities of F1 and F2, there exist minimal open nbd’s U1 and U2 of x such
that F1 (U1) ⊆ V and F2 (U2) ⊆ V . Then we have a minimal open nbd U := U1 = U2 of
x such that (F1 ∪ F2) (U) = F1 (U) ∪ F2 (U) ⊆ V . This shows that F1 ∪ F2 is u.m.c.

Now let’s we prove for lower minimal continuity. Let x ∈ X be an arbitrary point and
V be any open set which satisfies (F1 ∪ F2) (x) ∩ V ̸= ∅. In this case, there are three
situations.

If F1 (x)∩V ̸= ∅, then there exists a minimal open nbd U of x such that z ∈ U implies
F1 (z) ∩ V ̸= ∅ and so (F1 ∪ F2) (z) ∩ V ̸= ∅. This completes the proof.

If F2 (x) ∩ V ̸= ∅, then the proof is made similar to the previous case.
If F1 (x) ∩ V ̸= ∅ and F2 (x) ∩ V ̸= ∅, then a similar proof is made. ■

Theorem 4.11 If the multifunctions F1 : X ⇒ Y and F2 : X ⇒ Y are l.m.c., then the
multifunction F1 ∩ F2 : X ⇒ Y , (F1 ∩ F2) (x) = F1 (x) ∩ F2 (x) is l.m.c.

Proof. The proof can be done in a similar way. ■

Theorem 4.12 If Y is a normal space and the multifunctions F1 : X ⇒ Y , F2 : X ⇒ Y
are u.m.c. and point closed, then the multifunction F1 ∩ F2 : X ⇒ Y , (F1 ∩ F2) (x) =
F1 (x) ∩ F2 (x) is u.m.c.

Proof. Let x ∈ X and V be any open set with (F1 ∩ F2) (x) ⊆ V . Then we have
F1 (x)∩F2 (x)∩(Y \V ) = ∅. Since F1 (x) and F2 (x)∩(Y \V ) are disjoint closed sets and Y
is normal, there exist open sets V1 and V2 such that F1 (x) ⊆ V1 and F2 (x)∩(Y \V ) ⊆ V2.
If V3 := V2∪V , then we get F2 (x) ⊆ V3. Since F1 and F2 are u.m.c., there exists a minimal
open nbd U of x such that F1 (U) ⊆ V and F2 (U) ⊆ V . Hence we have

(F1 ∩ F2) (U) = F1 (U) ∩ F2 (U) ⊆ V1 ∩ V3 = V1 ∩ (V2 ∪ V ) ⊆ V

This completes the proof. ■

For a multifunction F : X ⇒ Y , the graph multifunction is defined asGF : X ⇒ X×Y ,
GF (x) = {x} × F (x). Moreover, the following hold:

(1) G+
F (A×B) = A ∩ F+(B),

(2) G−
F (A×B) = A ∩ F−(B) for any subsets A ⊆ X and B ⊆ Y [23].

Theorem 4.13 A multifunction F : X ⇒ Y is l.m.c. iff the graph multifunction GF is
l.m.c.

Proof. (⇒) Let x ∈ X and W be any open set of X × Y such that x ∈ G−
F (W ). Since

W ∩ ({x} × F (x)) ̸= ∅, there exists y ∈ F (x) such that (x, y) ∈ W and hence (x, y) ∈
U × V ⊆ W for some open sets U and V of X and Y , respectively. Since F (x) ∩ V ̸= ∅
and F is l.m.c., there exists a minimal open nbd G of x such that G ⊆ F−(V ). Then we
have G ⊆ U ∩G ⊆ U ∩ F−(V ) = G−

F (U × V ) ⊆ G−
F (W ). This shows that GF is l.m.c.

(⇐) Let x ∈ X and V be any open set of Y such that x ∈ F−(V ). Then X×V is open
in X×Y and GF (x)∩(X×V ) = ({x}×F (x))∩(X×V ) = {x}×(F (x)∩V ) ̸= ∅. Since GF

is l.m.c., there exists a minimal open nbd U of x such that U ⊆ G−
F (X×V ) = X∩F−(V ).

Hence we have U ⊆ F−(V ). This shows that F is l.m.c. ■

Theorem 4.14 A multifunction F : X ⇒ Y is u.m.c. iff the graph multifunction GF is
u.m.c.

Proof. (⇒) Suppose that GF : X ⇒ X × Y is u.m.c. Let x ∈ X and V be any
open set of Y containing F (x). Since X × V is open in X × Y and GF (x) ⊆ X × V ,
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there exists a minimal open nbd U of x such that GF (U) ⊆ X × V . Then we have
U ⊆ G+

F (X × V ) = F+(V ) and F (U) ⊆ V . This shows that F is u.m.c.
(⇐) Suppose that F is u.m.c. and suppose that GF (x) ⊆ U × V where U is open in

X and V is open in Y . Since F is u.m.c., there exists a minimal open nbd G of x such
that F (G) ⊆ V . Hence we have G ⊆ U ∩G ⊆ U ∩ F+(V ) = G+

F (U × V ). This completes
the proof. ■

It is known that the graph G(F ) of the multifunction F : X ⇒ Y is said to be closed
if for each (x, y) /∈ G(F ), there exist an open set U containing x and an open set V
containing y such that (U × V ) ∩G(F ) = ∅.

Definition 4.15 [38] A subset A of a topological space X is called α-paracompact if
every open cover of A in X has a locally finite open refinement in X which covers A.

Theorem 4.16 If F : X ⇒ Y is u.m.c. and point α-paracompact multifunction into a
Hausdorff space Y , then the graph G(F ) is closed.

Proof. Let (x0, y0) /∈ G(F ). Then y0 /∈ F (x0). Therefore, for every y ∈ F (x0), there
exists an open set Vy and an open set Wy in Y containing y and y0, respectively such
that Vy ∩ Wy = ∅. Then {Vy : y ∈ F (x0)} is a open cover of F (x0), thus there is a
locally finite open cover Ψ = {Uβ|β ∈ ∆} of F (x0) which refines {Vy : y ∈ F (x0)}. So
there exists an open neighborhood W0 of y0 such that W0 intersect only finitely many
members Uβ1

, Uβ2
, ..., Uβn

of Ψ. Chose finitely many points y1, y2, ..., yn of F (x0) such
that Uβk

⊂ Vyk
of each 1 ⩽ k ⩽ n and set W = W0 ∩ [

∩n
k=1Wyk

]. Then W is an open
neighborhood of y0 such thatW∩(∪Ψ) = ∅. Since F is u.m.c., then there exists a minimal
open nbd U of x0 such that U ⊆ F+(∪Ψ). Therefore, we have that (U ×W )∩G(F ) = ∅.
Thus, G(F ) is closed set X × Y . ■

In the upper Theorem, for upper minimal continuous multifunction F , if F is taken
as a point closed multifunction and Y is taken as a regular space, then we get also same
result.

Theorem 4.17 Let X and Xα be topological spaces for α ∈ Λ. If a multifunction
F : X ⇒

∏
α∈ΛXα is u(l).m.c., then pα ◦F is u(l).m.c. where pα :

∏
α∈ΛXα ⇒ Xα is the

projection for each α ∈ Λ.

Proof. We prove for upper minimal continuity. The other can be done similarly. Let
α ∈ Λ be an arbitrary index and x ∈ X be an arbitrary point. Suppose that Vα ⊆ Yα
is an open set with (pα ◦ F )(x) ⊆ Vα. Then we get x ∈ (pα ◦ F )+(Vα) = F+(p+α (Vα)) =
F+(Vα ×

∏
β ̸=αXβ). Since Vα ×

∏
β ̸=αXβ is open in

∏
α∈ΛXα and F is u.m.c., there

exists a minimal open nbd U of x such that U ⊆ F+(Vα ×
∏

β ̸=αXβ) = (pα ◦ F )+(Vα).
This shows that pα ◦ F is u.m.c. ■

We know that for the multifunctions F1 : X ⇒ Y and F2 : X ⇒ Z , and for any
subsets B ⊆ Y and C ⊆ Z, the following equations are true:

(1) (F1 × F2)
+ (B × C) = F+

1 (B) ∩ F+
2 (C),

(2) (F1 × F2)
− (B × C) = F−

1 (B) ∩ F−
2 (C).

Theorem 4.18 Let X, Y , and Z be topological spaces and F : X ⇒ Y , G : X ⇒ Z be
multifunctions. If the multifunction H : X ⇒ Y × Z, H (x) = F (x)×G (x) is u(l).m.c.,
then F and G are u(l).m.c.

Proof. Let x ∈ X be a arbitrary point and V and W be open sets such that F (x) ⊆ V
and G(x) ⊆ W . Then we get H(x) = F (x) × G (x) ⊆ V ×W . Since H is u.m.c., there
exists a minimal open nbd U of x such that U ⊆ H+ (V ×W ). Therefore, we have
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U ⊆ F+ (V ) ∩G+ (W ) and so U ⊆ F+ (V ) and U ⊆ G+ (W ). This completes the proof.
■

The proof in the case of lower minimal continuity can be done similarly to the above.

Theorem 4.19 Let Y be a normal topological space and F : X ⇒ Y be a multifunction
which satisfies F (x)∩F (y) = ∅ for each distinct points x, y ∈ X. If F is point closed and
u.m.c., then X is a Hausdorff space.

Proof. Let x and y be any two distinct points inX. Then we have F (x)∩F (y) = ∅. Since
Y is a normal space, then there exists disjoint open sets V and W such that F (x) ⊆ V
and F (y) ⊆ W . By upper minimal continuity of F , there exist minimal open nbd’s U
and U ′ of x and y, respectively such that U ⊆ F+ (V ) and U ′ ⊆ F+ (W ). Hence U and
U ′ are disjoint open sets, and so we have that X is Hausdorff space. ■

Theorem 4.20 Let Y be a normal topological space. If F : X ⇒ Y and G : X ⇒ Y are
point closed and u.m.c. multifunctions, then the set A = {x : F (x)∩G(x) ̸= ∅} is closed
in X.

Proof. Let x ∈ X−A. Then F (x)∩G(x) = ∅. Since F and G are point closed multifunc-
tions and Y is a normal space, then there exist disjoint open sets V and W containing
F (x) and G(x), respectively. Since F and G are u.m.c., there exists a minimal open nbd
U of x such that U ⊆ F+ (V ) and U ⊆ G+ (W ). Therefore, we have U ∩ A = ∅ and so
U ⊆ X −A. This shows that A is closed in X. ■
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