بررسی خواص آنتی اکسیدانی عصاره گیاه Calendula officinalis (گل همیشه بهار) و نقش آن در سنتز نانو ذرات اکسید
محورهای موضوعی : میکروبیولوژی مواد غذاییفرشته نعمت الهی 1 * , فریده طاهری کنجینی 2 , فریبا زمانی هرگلانی 3
1 - استادیار گروه شیمی تجزیه , دانشکده علوم پایه , واحد تهران شرق , دانشگاه آزاد اسلامی , تهران , ایران
2 - دانش آموخته کارشناسی ارشد شیمی تجزیه, گروه شیمی , واحد علوم و تحقیقات، دانشگاه آزاد اسلامی, تهران , ایران
3 - استادیار محیط زیست، دانشکده منابع طبیعی و محیط زیست , واحد علوم و تحقیقات، دانشگاه آزاد اسلامی, تهران , ایران
کلید واژه: اکسید روی, عصاره, فعالیت آنتی اکسیدانی, گل همیشه, نانوذره,
چکیده مقاله :
مقدمه: سنتز نانو ذرات اکسید روی به دلیل کاربردهای فراوان در صنعت بسته بندی، حفظ سلامت مواد غذایی و بعنوان مواد افزودنی مجاز در خوراکی ها وافزایش ماندگاری آنها بسیار ارزشمند است.مواد و روش ها: در این تحقیق سنتز سبز نانوذرات روی اکسید با استفاده از روی استات دی هیدرات و عصاره گل همیشه بهار به عنوان عامل احیا کننده و پایدارکننده انجام شد. خواص آنتی اکسیدانی عصاره گل همیشه بهار از نظر مقدار فنول وفلاونوئید بررسی گردید. اسید گالیک بهعنوان استاندارد برای رسم منحنی کالیبراسیون مورد استفاده قرار گرفت.یافته ها : مقدار ترکیبات فنولی کل عصاره آبی گل همیشهبهار برابر با 303 میلیگرم گالیک اسید در گرم عصاره گزارش شد. قدرت آنتی اکسیدانی این عصاره توسط سنجش مهار رادیکال آزاد 2،2 - دی فنیل- 1-پیکریل هیدرازیل (DPPH) ارزیابی گردید. نانوذرات حاصله با استفاده از روش های مختلف از قبیل طیف سنجی مادون قرمز تبدیل فوریه (FTIR)، پراش پرتو ایکس و تصاویر میکروسکوپی الکترون روبشی (SEM) مشخصه یابی شدند.نتیجه گیری : اندازه نانوذرات توسط عصاره گل همیشه بهار 8 الی 22 نانومتر به دست آمد. قطر متوسط نانوذرات سنتز شده بدون استفاده از عصاره گیاه بعنوان پایدارکننده، بزرگتر بوده و بیشتر از 18 نانومتر گزارش گردید. همچنین کلوخگی و انباشتگی بیشتری نیز در میان این نانوذرات مشاهده شد. عصاره گل همیشه بهار پتانسیل خوبی جهت سنتز سبز نانوذرات از خود نشان داد.
Introduction: The synthesis of zinc oxide nanoparticles is valuable due to its applications in the packaging and food industries as permitted additives to increase the shelf life.Materials and Methods: In this research, the synthesis of green nanoparticles of zinc oxide were performed by zinc acetate dihydrate. Calendula officinalis extract was used as reducing and stabilizing agent. The prepared ZnO NPs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Energy dispersive X- ray (EDX) and X-ray diffraction (XRD) analysis.Results: The size of nanoparticles prepared by Calendula officinalis extract was obtained at 8 to 22nm In addition, the antioxidant properties of prepared nanoparticles were analyzed in the terms of total phenolic and flavonoid content. The antioxidant activity of zinc oxide nanoparticles was evaluated using 2,2- diphenyl picryl hydrazyl (DPPH) method. Gallic acid was used as standard to draw the calibration curve. The amount of total phenolic compounds in aqueous extract of the plant was 303 mg of gallic acid per gram.Conclusion: Calendula officinalis extract showed high antioxidant activity and great potential for green synthesis of nanoparticles. The average diameter of nanoparticles synthesized without plant extract as a stabilizer, was larger than the green synthesized one (more than 18 nm). There was also less agglomeration in nanoparticles synthesized by Calendula officinalis extract.
Ai, T., Wang, F., Feng, X. & Ruan, M. (2014). Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceramics International, 40, 9947-9953.
Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M. & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8, 82-88.
Amdagni, P. & Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University,30, 168-175.
Anon. (2020). https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs
Bhainsa, K. C. & Dsouza, S. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160-164.
Dobrucka, R. & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences,4, 517-523.
Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science in Semiconductor Processing,34,365-372.
Fouda, A., Saad, E., Salem, S. S. & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252-261
Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J. & Zhang, L. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces, 7, 2597-2606.
Luque, P., Nava, O., Soto-robles, C., Vilchis-nestor, A., Garrafa-galvez, H. & Castro-beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 17638-17643.
Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C. A. Mey. International Journal of Bioscience, 6, 30-35
Ngoepe, N., Bita, Z., Mathipa, M., Mketo, N., Ntsendwana, B. & Hintsho-mbita, N.( 2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44, 16999-17006.
Nohwal, B., Chaudhary, R., Kumar, P. & Pundir, C. (2019). Fabrication and application of an amperometric lysine biosensor based on covalently immobilized lysine oxidase nanoparticles onto Au electrode. International Journal of Biological Macromolecules,18, 56-59
Patil, B. N. & Taranath, T. C. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. International Journal of Mycobacteriology, 5, 197-204.
Pulit-prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543-553.
Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95.
Saha, R., Subramani, K., Raju, S. A. M., Rangaraj, S. & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80-91.
Santhoshkumar, J., Kumar, S. V. & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459-465.
Suresh, D., Nethravathi, P. & Rajanaika, H. (2015). Green synthesis of multifunctional zinc oxide nanoparticles using Cassiafistula plant extract and their photodegradative, antioxidant. MaterialsScienceinSemiconductorProcessing, 446-454.
Taran, M., Rad, M. & Alavi, M. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium, 8, 81-83
Thema, F., Manikandan, E., Dhlamini, M. & Maazal, M. (2015). Green synthesis of ZnO . nanoparticles via Agathosma betulina extract. Materials Letters, 54- 63.
Vardan Galstyan, V., Bhandari, M. P., Sberveglieri, V., Sberveglieri, G. & Comini, E. (2018). Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors, 6- 16; doi:10.3390/chemosensors6020016
Vasilache, V., Popa, C., Filote, C., Cretu, M. A. & Benta, M. (2011). Nanoparticles application for improving the food safety and food processing. 7th International Conference on Materials Science and Engineering. 12, 1(31), 77-81
Xu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y. & Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir, 29, 5573-5580.
_||_
Ai, T., Wang, F., Feng, X. & Ruan, M. (2014). Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceramics International, 40, 9947-9953.
Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M. & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8, 82-88.
Amdagni, P. & Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University,30, 168-175.
Anon. (2020). https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs
Bhainsa, K. C. & Dsouza, S. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160-164.
Dobrucka, R. & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences,4, 517-523.
Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science in Semiconductor Processing,34,365-372.
Fouda, A., Saad, E., Salem, S. S. & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252-261
Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J. & Zhang, L. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces, 7, 2597-2606.
Luque, P., Nava, O., Soto-robles, C., Vilchis-nestor, A., Garrafa-galvez, H. & Castro-beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 17638-17643.
Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C. A. Mey. International Journal of Bioscience, 6, 30-35
Ngoepe, N., Bita, Z., Mathipa, M., Mketo, N., Ntsendwana, B. & Hintsho-mbita, N.( 2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44, 16999-17006.
Nohwal, B., Chaudhary, R., Kumar, P. & Pundir, C. (2019). Fabrication and application of an amperometric lysine biosensor based on covalently immobilized lysine oxidase nanoparticles onto Au electrode. International Journal of Biological Macromolecules,18, 56-59
Patil, B. N. & Taranath, T. C. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. International Journal of Mycobacteriology, 5, 197-204.
Pulit-prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543-553.
Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95.
Saha, R., Subramani, K., Raju, S. A. M., Rangaraj, S. & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80-91.
Santhoshkumar, J., Kumar, S. V. & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459-465.
Suresh, D., Nethravathi, P. & Rajanaika, H. (2015). Green synthesis of multifunctional zinc oxide nanoparticles using Cassiafistula plant extract and their photodegradative, antioxidant. MaterialsScienceinSemiconductorProcessing, 446-454.
Taran, M., Rad, M. & Alavi, M. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium, 8, 81-83
Thema, F., Manikandan, E., Dhlamini, M. & Maazal, M. (2015). Green synthesis of ZnO . nanoparticles via Agathosma betulina extract. Materials Letters, 54- 63.
Vardan Galstyan, V., Bhandari, M. P., Sberveglieri, V., Sberveglieri, G. & Comini, E. (2018). Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors, 6- 16; doi:10.3390/chemosensors6020016
Vasilache, V., Popa, C., Filote, C., Cretu, M. A. & Benta, M. (2011). Nanoparticles application for improving the food safety and food processing. 7th International Conference on Materials Science and Engineering. 12, 1(31), 77-81
Xu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y. & Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir, 29, 5573-5580.