Determination of the Antioxidant Activity of Calendula officinalis Extract and its Role in Synthesis of ZnO Nanoparticles
Subject Areas : MicrobiologyF. Nematollahi 1 * , F. Taheri Konjini 2 , F. Zamani Hergalani 3
1 - Assistant Professor of the Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran,
Iran.
2 - M.Sc. of the Department of Chemistry, Faculty of Science, Science and Research Branch, Islamic Azad
University, Tehran, Iran.
3 - Assistant Professor of Environment, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Keywords: Calendula officinalis, Plant Extract, Zinc Oxide Nanoparticles Antio,
Abstract :
Introduction: The synthesis of zinc oxide nanoparticles is valuable due to its applications in the packaging and food industries as permitted additives to increase the shelf life.Materials and Methods: In this research, the synthesis of green nanoparticles of zinc oxide were performed by zinc acetate dihydrate. Calendula officinalis extract was used as reducing and stabilizing agent. The prepared ZnO NPs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Energy dispersive X- ray (EDX) and X-ray diffraction (XRD) analysis.Results: The size of nanoparticles prepared by Calendula officinalis extract was obtained at 8 to 22nm In addition, the antioxidant properties of prepared nanoparticles were analyzed in the terms of total phenolic and flavonoid content. The antioxidant activity of zinc oxide nanoparticles was evaluated using 2,2- diphenyl picryl hydrazyl (DPPH) method. Gallic acid was used as standard to draw the calibration curve. The amount of total phenolic compounds in aqueous extract of the plant was 303 mg of gallic acid per gram.Conclusion: Calendula officinalis extract showed high antioxidant activity and great potential for green synthesis of nanoparticles. The average diameter of nanoparticles synthesized without plant extract as a stabilizer, was larger than the green synthesized one (more than 18 nm). There was also less agglomeration in nanoparticles synthesized by Calendula officinalis extract.
Ai, T., Wang, F., Feng, X. & Ruan, M. (2014). Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceramics International, 40, 9947-9953.
Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M. & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8, 82-88.
Amdagni, P. & Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University,30, 168-175.
Anon. (2020). https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs
Bhainsa, K. C. & Dsouza, S. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160-164.
Dobrucka, R. & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences,4, 517-523.
Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science in Semiconductor Processing,34,365-372.
Fouda, A., Saad, E., Salem, S. S. & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252-261
Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J. & Zhang, L. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces, 7, 2597-2606.
Luque, P., Nava, O., Soto-robles, C., Vilchis-nestor, A., Garrafa-galvez, H. & Castro-beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 17638-17643.
Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C. A. Mey. International Journal of Bioscience, 6, 30-35
Ngoepe, N., Bita, Z., Mathipa, M., Mketo, N., Ntsendwana, B. & Hintsho-mbita, N.( 2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44, 16999-17006.
Nohwal, B., Chaudhary, R., Kumar, P. & Pundir, C. (2019). Fabrication and application of an amperometric lysine biosensor based on covalently immobilized lysine oxidase nanoparticles onto Au electrode. International Journal of Biological Macromolecules,18, 56-59
Patil, B. N. & Taranath, T. C. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. International Journal of Mycobacteriology, 5, 197-204.
Pulit-prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543-553.
Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95.
Saha, R., Subramani, K., Raju, S. A. M., Rangaraj, S. & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80-91.
Santhoshkumar, J., Kumar, S. V. & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459-465.
Suresh, D., Nethravathi, P. & Rajanaika, H. (2015). Green synthesis of multifunctional zinc oxide nanoparticles using Cassiafistula plant extract and their photodegradative, antioxidant. MaterialsScienceinSemiconductorProcessing, 446-454.
Taran, M., Rad, M. & Alavi, M. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium, 8, 81-83
Thema, F., Manikandan, E., Dhlamini, M. & Maazal, M. (2015). Green synthesis of ZnO . nanoparticles via Agathosma betulina extract. Materials Letters, 54- 63.
Vardan Galstyan, V., Bhandari, M. P., Sberveglieri, V., Sberveglieri, G. & Comini, E. (2018). Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors, 6- 16; doi:10.3390/chemosensors6020016
Vasilache, V., Popa, C., Filote, C., Cretu, M. A. & Benta, M. (2011). Nanoparticles application for improving the food safety and food processing. 7th International Conference on Materials Science and Engineering. 12, 1(31), 77-81
Xu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y. & Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir, 29, 5573-5580.
_||_
Ai, T., Wang, F., Feng, X. & Ruan, M. (2014). Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceramics International, 40, 9947-9953.
Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M. & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8, 82-88.
Amdagni, P. & Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University,30, 168-175.
Anon. (2020). https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs
Bhainsa, K. C. & Dsouza, S. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160-164.
Dobrucka, R. & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences,4, 517-523.
Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science in Semiconductor Processing,34,365-372.
Fouda, A., Saad, E., Salem, S. S. & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252-261
Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J. & Zhang, L. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces, 7, 2597-2606.
Luque, P., Nava, O., Soto-robles, C., Vilchis-nestor, A., Garrafa-galvez, H. & Castro-beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 17638-17643.
Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C. A. Mey. International Journal of Bioscience, 6, 30-35
Ngoepe, N., Bita, Z., Mathipa, M., Mketo, N., Ntsendwana, B. & Hintsho-mbita, N.( 2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44, 16999-17006.
Nohwal, B., Chaudhary, R., Kumar, P. & Pundir, C. (2019). Fabrication and application of an amperometric lysine biosensor based on covalently immobilized lysine oxidase nanoparticles onto Au electrode. International Journal of Biological Macromolecules,18, 56-59
Patil, B. N. & Taranath, T. C. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. International Journal of Mycobacteriology, 5, 197-204.
Pulit-prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543-553.
Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95.
Saha, R., Subramani, K., Raju, S. A. M., Rangaraj, S. & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80-91.
Santhoshkumar, J., Kumar, S. V. & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459-465.
Suresh, D., Nethravathi, P. & Rajanaika, H. (2015). Green synthesis of multifunctional zinc oxide nanoparticles using Cassiafistula plant extract and their photodegradative, antioxidant. MaterialsScienceinSemiconductorProcessing, 446-454.
Taran, M., Rad, M. & Alavi, M. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium, 8, 81-83
Thema, F., Manikandan, E., Dhlamini, M. & Maazal, M. (2015). Green synthesis of ZnO . nanoparticles via Agathosma betulina extract. Materials Letters, 54- 63.
Vardan Galstyan, V., Bhandari, M. P., Sberveglieri, V., Sberveglieri, G. & Comini, E. (2018). Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors, 6- 16; doi:10.3390/chemosensors6020016
Vasilache, V., Popa, C., Filote, C., Cretu, M. A. & Benta, M. (2011). Nanoparticles application for improving the food safety and food processing. 7th International Conference on Materials Science and Engineering. 12, 1(31), 77-81
Xu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y. & Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir, 29, 5573-5580.