بررسی ویژگیهای ضد اکسیدانی و ضد باکتریایی عصاره اناریجه (Froriepia subpinnata) درونپوشانی شده با مالتودکسترین-کنسانتره آب پنیر
محورهای موضوعی : روشهای نگهداری مواد غذاییراحله عالی پور 1 , عبداله علیزاده کارسالاری 2 , داریوش خادمی شورمستی 3
1 - دانش آموخته کارشناسی ارشد گروه کشاورزی، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران
2 - استادیار گروه شیمی، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران
3 - استادیار گروه کشاورزی، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران
کلید واژه: اناریجه (Froriepia subpinnata), ترکیبات زیستفعال, درونپوشانی, ضداکسیدان, هاله عدم رشد باکتری,
چکیده مقاله :
چکیده مقدمه: طی سالیان اخیر بکارگیری درونپوشانی جهت حفظ و افزایش اثرات ترکیبات زیست فعال عصارههای گیاهی با نتایج امیدوارکنندهای همراه بوده است. مطالعه حاضر با هدف بررسی درونپوشانی عصاره هیدروالکلی اناریجه با مالتودکسترین کنسانتره آبپنیر بر ویژگیهای ضداکسیدانی و ضدباکتریایی آن انجام شد. مواد و روشها: عصاره هیدروالکلی اناریجه با روش التراسوند استخراج و فعالیت ضداکسیدانی و ضدباکتریایی غلظتهای ppm 1000 و 500 عصاره آزاد و درونپوشانی شده با یکدیگر مقایسه شد. یافته ها: میانگین قطر ذرات درونپوشانی شده عصاره برابر 89/169 نانومتر و بازده درونپوشانی 25/65 درصد بود. در غلظت ppm 1000 عصاره درونپوشانی شده فعالیت مهار رادیکال آزاد DPPH (25/91 درصد) و مقدار عددی بتاکاروتن (24/92 درصد) بهطور معنیداری بیشتر از سایر تیمارها بود (05/0>P). ضمن اینکه قطر هاله عدم رشد در غلظت ppm 1000 عصاره درونپوشانیشده علیه باکتریهای گرم مثبت استافیلوکوکوس اورئوس و باسیلوس سرئوس (به ترتیب 02/26 و 03/22 میلیمتر) و گرم منفی اشریشیا کلی و سالمونلا انترکا (به ترتیب 49/20 و 38/19 میلیمتر) نیز بیشتر از سایر تیمارها بود (05/0>P). نتیجهگیری: نتایج نشان داد درونپوشانی عصاره اناریجه با مالتودکسترین کنسانتره آبپنیر بهطور معنیداری خاصیت ضداکسیدانی و ضدباکتریایی آن را افزایش داد. لذا میتوان از غلظت ppm 1000عصاره اناریجه درونپوشانی شده بهعنوان جایگزین آنتیاکسیدان و آنتیبیوتیک سنتزی استفاده نمود.
Abstract Introduction: In recent years, the use of encapsulation has been associated with promising results to preserve and increase the biological effects of the active compounds of plant extracts. The present study was conducted to address of antioxidant and antibacterial properties of the maltodextrin-whey concentrate-based encapsulation of Froriepia subpinnata hydroalcoholic extract. Materials and Methods: Froriepia subpinnata was extracted by ultrasonic method. Then its antioxidant and antibacterial activity were evaluated and compared in 500 and 1000 ppm levels. Results: The particle size of the encapsulated extract and the encapsulation efficiency measured 169.89 nm and 65.25% respectively. The encapsulated extract had significantly higher activity of DPPH free radical inhibition (91.25%) and beta-carotene (92.24%) than other treatments at 1000 ppm (P<0.05). In addition, the inhibition zone of Gram-positive bacteria Staphylococcus aureus and Bacillus cereus (26.02 and 22.03 mm respectively) and Gram-negative Escherichia coli and Salmonella enterica (20.49 and 19.38 mm respectively) in 1000 ppm encapsulated extract has also more extend than others (P<0.05). Conclusion: The results showed that the maltodextrin-whey concentrate-based encapsulation significantly improved Froriepia subpinnata extract antioxidant and antibacterial properties. Therefore, it is possible to use 1000 ppm of encapsulated Froriepia subpinnata extract as a suitable alternative for synthetic antibiotics and antioxidants.
Alipour Mazandrani, H., Javadian, S.Y. & Bahram, S. (2015). The effect of encapsulated fennel extracts on the quality of silver carp fillets during refrigerated storage. Food science and nutrition, 4(2), 298–304. https://doi.org/10.1002/fsn3.290.
Askari, F., Sefidkon, F., Teimouri, M. & Youser Nanaei, S. (2009). Chemical composion and antimicrobial activity of the essential oil of pimpinella puberula (dc). boiss. Agriculture science Technology, 11, 431-438. [In Persian]
Bagheri. R., Izadi Amoli. R., Tabari Shahndash. N.& Shahosseini. S. R. (2016). Comparing the effect of encapsulated and unencapsulated fennel extracts on the shelf life of minced common kilka (Clupeonella cultriventris caspia) and Pseudomonas aeruginosa inoculated in the mince. Food science and nutrition, 4(2), 216–222. [In Persian]
Bahrami Feridoni, S.& Khademi Shurmasti, D. (2020). Effect of the nanoencapsulated sour tea (Hibiscus sabdariffa L.) extract with carboxymethyl cellulose on quality and shelf life of chicken nugget. Food science and nutrition, 8, 3704–3715. doi.org/10.1002/fsn3.1656.
Bahrami, A., Jamzad, M. & Sedaghat, S. (2021). Phytochemicals and Biological Activities of Froriepia subpinnata (Ledeb) Baill. Extracts. Journal of Medicinal plants and By-product, 10(1), 109-115. http://doi.org/10.22092/jmpb.2020.352614.1295.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. & Nasri, M. (2009). Antioxidant & free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114, 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075.
Bozin, B., Mimica-Dukic, N., Samojlik, I. & Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chemistry 55, 7879 – 7885. https://doi.org/10.1021/jf0715323.
Burt, S.A. (2004). Essential oils: their antibacterial properties and potential applications in foods: a review. International Journal of Food Microbiology, 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.
Esmaeli, F., Tajik, H., Mehdizadeh, T. & Mayeli, M. (2017). Determination and Comparison of Antioxidant Activity and Phenolic Content of Pimpinella Affinis Hydroethanolic Extract and Essential Oil. The Journal of Urmia University of Medical Sciences, 28(5), 311-320. [In Persian]
FaikAhmet, A., Sema, H.A., Sengul, A.K., Jiri, G., Katerina. V. & Ulrichova, J. (2008). Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC) extracts and their antioxidant and antibacterial activities. Food Chemistry, 107, 19-25. https://doi.org/10.1016/j.foodchem.2007.07.003.
Farhadi, N., Meshkini, S.& Tooraj Mehdizadeh, T. (2022). Effect of Edible Chitosan Coating Containing Froriepia
subpinnata Extracton Shelf life of Nile tilapia (Oreochromis niloticus) Fillet at Refrigerated. Research and Innovation in Food Science and Technology, 11(1), 95-108. [In Persian]
Gortzi, O., Lalas, S., Chinou, I. & Tsaknis, J. (2007). Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. European Food Research and Technology, 36, 151-156.
Grisi, T. C. & Lira, K. G. (2005). Action of nisin and high ph on growth of Staphylococcus aureus and Salmonella sp. in pure culture and the meat of land crab (Ucides cordatus). Brazilian Journal of Microbiology, 36, 151-156. https://doi.org/10.1590/S1517-83822005000200010.
Hosseini, F., Motamedzadegan, A., Naghizadeh, Sh. & Rahaiee, S. (2022). Encapsulation of chia (Saliva hispanica L.) seeds extract with nano-liposomes and basil seed gum and investigation of physicochemical characteristics and its release in simulated gastrointestinal conditions. Iranian Journal of Food Science and Technology, 127 (19), 291-303. [In Persian]
Hosseinnia, M., Almasi, H. & Alizadeh Khaled, M. (2020). Evaluation of the properties of microcapsules containing Ziziphora clinopodiodes extract stabilized by gum Arabic, whey protein isolate, guar gum and their combination. Journal of Food Researches, 29 (4), 101-123. [In Persian]
Hussain, A. I., Anwar, F., Sherazi, S.T.H. & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108, 986-995. https://doi.org/10.1016/j.foodchem.2007.12.010.
Joye, I. J, Davidov-Pardo G. & McClements D. J. (2015). Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. Food Hydrocolloids, 49, 127-134. https://doi.org/10.1016/j.foodhyd.2015.02.038.
Khan, M. K., Abeit-Vian, M., Fabiano Tixier, A.S., Dangles, O. & Chemat, F. (2010). Ultrasonicassisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119, 851-858. http://dx.doi.org/10.1016/j.foodchem.2009.08.046.
Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107, 227-247. https://doi.org/10.1016/j.foodres.2018.02.026.
Leong, L. P. & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76 (1): 69-75. https://doi.org/10.1016/S0308-8146(01)00251-5.
Mehrabanjoubani, P., Ghorbani Nohooji, M., Karimi, E. & Abdolzadeh, A. (20210. The differences between Froriepia subpinnata and Pimpinella anisum L. commonly named as anarijeh based on major components of the essential oil; a marker for resolve ambiguities. Journal of Medicinal Plants. 20(79), 59-71. doi: 10.52547/jmp.20.79.59
Mozaffarian, V. (2012). Identification of Medicinal and Aromatic Plants of Iran. Farhang Moaser Press, Tehran, Iran, 726-729. [In Persian]
Mohdaly, A. A. A., Smetanska. I., Ramadan, M. F., Sarhan, M. A. & Mahmoud, A. (2011). Antioxidant potential of sesame (Sesamum indicum) cake extract in stabilization of sunflower and soybean oils. Ind. Crops Prod. 34, 952–959. [In Persian]
Ojagh, S. M., Rezaei, M., Razavi, S. H. & Hosseini, S. M. H. (2012). Investigation of antibacterial activity cinnamon bark essential oil (Cinnamomum zeylanicum) in vitro antibacterial activityagainst five food spoilage bacteria. Iranian Journal of Food Science and Technology, 9(35), 67-76. [In Persian]
Oussalah, M., Caillet, S., Saucier, L. & Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E coli 0157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18, 414-420. https://doi.org/10.1016/j.foodcont.2005.11.009
Rahmati-Joneidabad, M. & Alizadeh Behbahani, B. (2021). Evaluation of the antifungal effect of Froriepiasubpinnataessential oil on Aspergillus niger (black mold) and Botrytis cinereal (gray mold) grape poisoning agent: A study "in vitro". Iranian Journal of Food Science and Technology, 17 (108) [In Persian].
Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J. & Saenz, C. (2015). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45, 1386-1394. https://doi.org/10.1111/j.1365-2621.2010.02270.
Sacchetti, G. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91, 621-632. https://doi.org/10.1016/j.foodchem.2004.06.031.
Salmanian, Sh. Sadeghi Mahoonak, A. R. & Jamson, M. (2018). Determination of amounts, antioxidant properties and identification of main phenolic compound in Enarijeh(Froriepiasubpinnata)extract by RP-HPLC method. Iranian Journal of Food Science and Technology, 15 (81). [In Persian]
Saremi, E., Habibi Najafi, M. B., Haddad Khodaparast, M. H. & Bahraini, M. (2017). Effect of extraction methods on the antioxidant properties of Pimpinella affinis. Iranian Journal of Food Science and Technology, 14 (69). [In Persian]
Shahnazi S., Khalili Sigaroudi F., Ajni Y., Yazdani D., Ahvazi, M. & taghizad, F. (2007). Investigation of chemical composiotion and antimicrobial properties Thymus trautvetteri essential oil. Journal of Medicinal Plants, 23, 80 – 88.
Shahkol, F., Abbasi, H. & Norouzi Mobarakeh, M. (2022). Modeling the Encapsulation of Thymus Essential Oil (Thymusvulgaris) in Sodium Caseinate, Maltodextrin and Modified starchUsing Response Surface (RSM) and Artificial Neural Network (ANN). Iranian Journal of Food Science and Technology, 19 (125), 225-240. [In Persian]