هیدروژناسیون روغن سویا با تکنیک پلاسما سرد تحت شرایط ولتاژ 15 کیلوولت و ترکیب گازی 50% هیدروژن- 50% نیتروژن
محورهای موضوعی : شیمی مواد غذاییضحی سیرتی 1 , مریم قراچورلو 2 * , حمیدرضا قمی مرزدشتی 3 , رضا عزیزی نژاد 4
1 - دانشجوی دکتری گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار پژوهشکده لیزر و پلاسما، دانشگاه شهید بهشتی، تهران، ایران
4 - استادیار گروه بیوتکنولوژی و بهنژادی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اسید چرب ترانس, پلاسمای سرد, خواص فیزیکوشیمیایی, روغن سویا, هیدروژناسیون ,
چکیده مقاله :
مقدمه: به دلیل بالا بودن میزان اسیدهای چرب غیر اشباع در روغن سویا، احتمال رخداد اکسیداسیون در این محصول بالا و کاربرد آن¬ در صنعت غذا محدود می¬باشد؛ لذا جهت افزایش پایداری اکسیداتیو و توسعه کاربردهای غذایی آن، فرایندهای اصلاحی متعددی مورد توجه قرار گرفته است که در این بین فرایند هیدروژناسیون با استفاده از تکنولوژی نوین پلاسمای سرد جهت تولید روغن نیمه هیدروژنه با اسیدهای چرب ترانس بسیار پایین، مورد توجه قرار گرفته است. مواد و روش¬ها: در این پژوهش به بررسی اثر استفاده از پلاسمای سرد تخلیه مانع دی الکتریک سطحی با استفاده از تیمار 13 ساعته، ولتاژ 15کیلوولت و گاز هیدروژن 50% و نیتروژن 50% بر روی خصوصیات فیزیکیوشیمیایی روغن سویا پرداخته شد. در بازه¬های زمانی مشخص از نمونه¬های تیمار شده نمونه برداری گردید و ترکیب اسیدهای چرب، اندیس یدی، ضریب شکست، محتوی کارتنوئید، نقطه ذوب، اندیس پراکسید، محتوی توکوفرول و محتوی استرول آن¬ها اندازه گیری شد. یافته¬ها: نتایج حاصله نشان داد که در اثر استفاده از تیمار پلاسمای سرد تخلیه مانع دی الکتریک سطحی 13 ساعته، محتوی اسیدهای چرب غیر اشباع از 62/58% به 24/40%، محتوی کارتنوئید ازpmm 38/26 به ppm 32/6، ضریب شکست از 4672/1 به 4400/1، اندیس یدی حدود از 64/129 به 45/100، میزان استرول کل از pmm 51/2636 به pmm 86/2315 به طور معناداری کاهش و عدد پراکسید از 4/2 به 8/5 meq O2/kg oil و نقطه ذوب به C° 7 افزایش یافتند(p<0.05). همچنین میزان اسیدهای چرب ترانس تولید شده به صورت بسیار جزئی (85/0 %) مشاهده گردید. نتیجه گیری: با توجه به نتایج بدست آمده از بررسی¬های صورت گرفته، می¬توان از تیمار پلاسما دی¬بی¬دی سطحی به عنوان فناوری نوین جهت هیدروژناسیون روغن¬ها به همراه رنگبری استفاده نمود.
Abstract: Introduction: Due to the high content of unsaturated fatty acids in soybean oil, the possibility of oxidation occurrence in this product is high and its application in the food industry is limited. Therefore, to increase oxidative stability and extend food applications of soybean oil, various modification processes have been investigated. Among modification processes, the hydrogenation process using the cold plasma technology has been considered to produce the partially hydrogenated oil with very low trans fatty acids. Materials and methods: this research evaluated the effect of surface dielectric barrier discharge cold plasma on physicochemical properties of soybean oil at 15 kV voltage and 50% hydrogen- 50% nitrogen gas composition for 13-hour treatment. The samples were taken at the certain intervals to measure fatty acid composition, iodine value, refractive index, carotenoid content, melting point, peroxide value, tocopherol content, and sterol content during the treatment. Findings: After a 13-h treatment, the results showed an decrease in the content of unsaturated fatty acids, carotenoid content, refractive index, iodine value and total sterol content from 58.62% to 40.24%, from 26.38 ppm to 6.32 ppm, from 1.4672 to 1.4400, from 129.64 to 100.45 and from 2636.51 ppm to 2315.86 ppm and an increase in peroxide value from 2.4 to 5.8 meq O2/kg oil and melting point to 7°C, respectively (p<0.05). In addition, the content of trans fatty acids was detected in very small content (0.85%). Conclusion: According to the obtained results, surface dielectric barrier discharge cold plasma treatment can be used as a new technology for the hydrogenation of oils along with bleaching oil.
Adu-Mensah, D., Mei, D., Zuo, L., Zhang, Q., & Wang, J. (2019). A review on partial hydrogenation of biodiesel and its influence
on fuel properties. Fuel, 251, 660-668. Amorim, D. S., Amorim, I. S., Chisté, R. C., Teixeira Filho, J., Fernandes, F. A. N., & Godoy, H. T. (2023). Effects of cold plasma
on chlorophylls, carotenoids, anthocyanins, and betalains. Food Research International, 112593. Bajaniya, V. K., Kandoliya, U. K., Bodar, N. H., Bhadja, N. V., & Golakiya, B. A. (2015). Fatty acid profile and phytochemical characterization of bael seed (Aegle marmelos L.) oil. International Journal of Current Microbiology and Applied Sciences, 4(2), 97-102
. Breden, D., Idicheria, C. A., Keum, S., Najt, P. M., & Raja, L. L. (2018). Modeling of a dielectric-barrier discharge-based cold
plasma combustion ignition system. IEEE Transactions on Plasma Science, 47(1), 410-418. Covaciu, F. D., Berghian-Grosan, C., Feher, I., & Magdas, D. A. (2020). Edible oils differentiation based on the determination of
fatty acids profile and Raman spectroscopy—a case study. Applied Sciences, 10(23), 8347. Feizollahi, E., Misra, N. N., & Roopesh, M. S. (2021). Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition, 61(4),
666-689. Fernandes, F. A., Santos, V. O., & Rodrigues, S. (2019). Effects of glow plasma technology on some bioactive compounds of
acerola juice. Food Research International, 115, 16-22. Figueroa-Pinochet, M. F., Castro-Alija, M. J., Tiwari, B. K., Jiménez, J. M., López-Vallecillo, M., Cao, M. J., & Albertos, I. (2022).
Dielectric Barrier Discharge for Solid Food Applications. Nutrients, 14(21), 4653. Gebremical, G. G., Emire, S. A., & Berhanu, T. (2019). Effects of multihollow surface dielectric barrier discharge plasma on chemical and antioxidant properties of peanut. Journal of Food Quality, 2019. Ghahjaverestani, S. T., Gharachorloo, M., & Ghavami, M. (2022). Application of coconut fiber and shell in the bleaching of
soybean oil. Grasas y Aceites, 73(3), e471-e471. Indiarto, R., & Qonit, M. A. H. (2020). A review of soybean oil lipid oxidation and its prevention techniques. Int. J. Adv. Sci.
Technol, 29(6), 5030-5037. Kasprzak, M., et al. (2020). The degradation of bioactive compounds and formation of their oxidation derivatives in refined
rapeseed oil during heating in model system. Lwt, 123, 109078. Kehili, M., Choura, S., Zammel, A., Allouche, N., & Sayadi, S. (2018). Oxidative stability of refined olive and sunflower oils supplemented with lycopene-rich oleoresin from tomato peels industrial by-product, during accelerated shelf-life storage.
Food Chemistry, 246, 295-304. Kmiecik, D., et al. (2021). Thermooxidation of phytosterol molecules in rapeseed oil during heating: The impact of
unsaturation level of the oil. Foods, 50, 1–14. Kongprawes, G., Wongsawaeng, D., Hosemann, P., Ngaosuwan, K., Kiatkittipong, W., & Assabumrungrat, S. (2021).
Improvement of oxidation stability of fatty acid methyl esters derived from soybean oil via partial hydrogenation using
dielectric barrier discharge plasma. International Journal of Energy Research, 45(3), 4519-4533. Laguerre, M., Bayrasy, C., Panya, A., Weiss, J., McClements, D. J., Lecomte, J., ... & Villeneuve, P. (2015). What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Critical reviews in food science and
nutrition, 55(2), 183-201. Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022). Cold plasma in food processing: Design,
mechanisms, and application. Journal of Food Engineering, 312, 110748. Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model
systems. Trends in Food Science & Technology, 55, 39-47. Motamedzadegan, A., Dehghan, B., Nemati, A., Tirgarian, B., & Safarpour, B. (2020). Functionality improvement of virgin
coconut oil through physical blending and chemical interesterification. SN Applied Sciences, 2, 1-18. Mukhametov, A., Mamayeva, L., Kazhymurat, A., Akhlan, T., & Yerbulekova, M. (2023). Study of vegetable oils and their blends
using infrared reflectance spectroscopy and refractometry. Food Chemistry: X, 17, 100386. Na, H., Mok, C., & Lee, J. (2020). Effects of plasma treatment on the oxidative stability of vegetable oil containing antioxidants.
Food chemistry, 302, 125306. Nayebzadeh, H., Haghighi, M., Saghatoleslami, N., Alaei, S., & Yousefi, S. (2019). Texture/phase evolution during plasma treatment of microwave-combustion synthesized KOH/Ca12Al14O33-C nanocatalyst for reusability enhancement in
conversion of canola oil to biodiesel. Renewable Energy, 139, 28-39. Niveditha, N. V., Jadhav, H. B., Ahlawat, A., Kalaivendan, R. G. T., & Annapure, U. S. (2023). Effect of cold plasma processing
on physicochemical characteristics and thermal properties of palm oil. Future Foods, 7, 100231. Pankaj, S. K., & Keener, K. M. (2017). Cold plasma: Background, applications and current trends. Current Opinion in Food
Science, 16, 49-52.
Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), 4. Peng, P., Chen, P., Schiappacasse, C., Zhou, N., Anderson, E., Chen, D., ... & Ruan, R. (2018). A review on the non-thermal
plasma-assisted ammonia synthesis technologies. Journal of cleaner production, 177, 597-609. Puprasit, K., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W., & Assabumrungrat, S. (2022). Improved hydrogenation process for margarine production with no trans fatty acid formation by non-thermal plasma with needle-in-tube
configuration. Journal of Food Engineering, 334, 111167. Puprasit, K., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W., & Assabumrungrat, S. (2020). Non-thermal dielectric barrier discharge plasma hydrogenation for production of margarine with low trans-fatty acid formation. Innovative Food Science &
Emerging Technologies, 66, 102511. Rezaei, F., Bakhshi, D., Ghazvini, R. F., Majd, D. J., & Pourghayoumi, M. (2014). Evaluation of fatty acid content and nutritional properties of selected native and imported hazelnut (Corylus avellana L.) varieties grown in Iran. Journal of applied botany
and food quality, 87. Rodrigues, N., Dias, L. G., Veloso, A. C., Pereira, J. A., & Peres, A. M. (2016). Monitoring olive oils quality and oxidative
resistance during storage using an electronic tongue. LWT, 73, 683-692. Sirati, Z., Gharachorloo, M., Ghomi, H. & Azizinezhad, R. (2023). Production of partially hydrogenated soybean oil with low
trans-fatty acids using surface dielectric barrier discharge cold plasma. Food Science and Technology International, 1-11. Subroto, E., & Qonit, M. A. H. (2020). Modification of soy protein for the production of bioactive peptides and their utilization.
Int. J. Sci. Technol. Res, 9(2), 3121-3127. Subroto, E., Pangawikan, A. D., Yarlina, V. P., & Isnaeni, N. F. (2020). Characteristics, purification, and the recent applications
of soybean oil in fat-based food products: a review. International Journal, 8(7). Suwal, S., Coronel-Aguilera, C. P., Auer, J., Applegate, B., Garner, A. L., & Huang, J. Y. (2019). Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology. Innovative food
science & emerging technologies, 53, 18-25. Szabó, É., Csölle, I., Felső, R., Kuellenberg de Gaudry, D., Nyakundi, P. N., Ibrahim, K., ... & Lohner, S. (2023). Benefits and Harms of Edible Vegetable Oils and Fats Fortified with Vitamins A and D as a Public Health Intervention in the General
Population: A Systematic Review of Interventions. Nutrients, 15(24), 5135. Teasdale, S. B., Marshall, S., Abbott, K., Cassettari, T., Duve, E., & Fayet-Moore, F. (2022). How should we judge edible oils and fats? An umbrella review of the health effects of nutrient and bioactive components found in edible oils and fats. Critical
reviews in food science and nutrition, 62(19), 5167-5182. Thirumdas, R., Kadam, D., & Annapure, U. S. (2017). Cold plasma: An alternative technology for the starch modification. Food
Biophysics, 12, 129-139. Wongjaikham, W., Kongprawes, G., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W., Hosemann, P., & Assabumrungrat, S. (2022). Production of low trans-fat margarine by partial hydrogenation of palm oil using nature-friendly and catalyst-free
microwave plasma technique. Innovative Food Science & Emerging Technologies, 80, 103107. Wongjaikham, W., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W., & Assabumrungrat, S. (2023). Review of Non-Thermal
Plasma Technology for Hydrogenation of Vegetable Oils and Biodiesel. Engineering Journal, 27(5), 1-27. Yepez, X. V., & Keener, K. M. (2016). High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without
trans-fatty acids. Innovative Food Science & Emerging Technologies, 38, 169-174. Yepez, X. V., Baykara, H., Xu, L., & Keener, K. M. (2021). Cold plasma treatment of soybean oil with hydrogen gas. Journal of
the American Oil Chemists' Society, 98(1), 103-113. Yepez, X., Baykara, H., Xu, L., & Keener, K. (2020). Atmospheric Cold Plasma Treatment of Soybean Oil with Hydrogen Gas.
Authorea Preprints.