فعالیت ضدباکتریایی و آنتیاکسیدانی اسانس آویشن (Thymus vulgaris) و عصاره آبی دارچین (Cinnamomum verum) و نانوامولسیونهای حاصل از آنها
الموضوعات :
امیرحسین خلیلی اقدم
1
,
شهین زمردی
2
,
لیلا روفهگرینژاد
3
,
اصغر خسروشاهی
4
,
شهرام حنیفیان
5
1 - دانشجوی دکتری گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 - دانشیار بخش تحقیقات فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان
تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران
3 - دانشیار گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
4 - استاد صنایع غذایی، موسسه آموزش عالی غیر انتفاعی، غیر دولتی معراج علم سلماس، سلماس، ایران
5 - دانشیار گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
تاريخ الإرسال : 10 الخميس , ذو القعدة, 1443
تاريخ التأكيد : 19 الأربعاء , محرم, 1444
تاريخ الإصدار : 21 الأحد , شوال, 1443
الکلمات المفتاحية:
اسانس آویشن,
عصاره آبی دارچین,
نانوامولسیون,
ملخص المقالة :
امروزه اسانسها بهعنوان ترکیبات آنتیاکسیدانی و ضدمیکروبی طبیعی، بهطور فزایندهای برای کنترل پاتوژنهای غذایی و افزایش ایمنی مواد غذایی مورد استفاده قرار گرفته است. با این حال، کاربرد اسانسها در صنایع غذایی بهدلیل حلالیت کم در آب، طعم شدید و فراریت بالا محدود است. بنابراین، برای افزایش پراکندگی آب و جلوگیری از تخریب اسانسها، میتوان از نانوامولسیونها استفاده کرد. در این مطالعه، دو نوع نانوامولسیون اسانس آویشن (TEO)، یکی با آب مقطر (NEO) و دیگری با عصاره آبی دارچین (NEOC) تهیه شد و خواص فیزیکی، ضدمیکروبی و آنتیاکسیدانی اسانس، عصاره و نانوامولسیونها تعیین گردید. نتایج نشان داد که میانگین اندازه ذرات نانوامولسیونهای NEOC و NEO بهترتیب 2/728 و 4/162 نانومتر و شاخص PDI بهترتیب در 19/0 و 30/0 بود. ترکیبات پلیفنلی عصاره آبی دارچین، TEO، NEO و NEOC در محدوده 4/33 تا 9/104 میلیگرم معادل اسیدگالیک بر گرم و فعالیت آنتیاکسیدانی (DPPH) در محدوده 3/16 تا 4/66 درصد تعیین شد. ترکیبات فنلی و DPPH، TEO و NEOC بیشترین مقدار بود. اثرات ضدمیکروبی، NEO و NEOC در برابر استافیلوکوکوس اورئوس و سالمونلا تیفی موریوم، بهطور معنیداری بالاتر ازTEO و عصاره آبی دارچین بود. کمترین مقدار MIC و MBC ابتدا مربوط به NEOC و سپس مربوط به NEO بود که نشاندهنده حساسیت بیشتر میکروارگانیسمهای مورد بررسی به نانوامولسیونها است. بر اساس نتایج حاصله بیشترین فعالیت ضدمیکروبی و آنتیاکسیدانی مربوط به نانوامولسیون NEOC بود. لذا میتوان از آن در محصولات غذایی برای جلوگیری از مسمومیت غذایی و برای درمان بیماریهای ناشی از استافیلوکوکوس اورئوس و سالمونلا تیفی موریوم استفاده کرد.
المصادر:
Abdollahzadeh, E., Rezaei, M. and Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35: 177–
Ahmadi, O. and Jafarizadeh-Malmiri. H. (2021). Intensification process in thyme essential oil mnanoemulsion preparation based on subcritical water as green solvent and six different emulsifiers. Green Processing and Synthesis, 10: 430–43.
Aljabeili, H.S.,Barakat, H. and Abdel-Rahman, H.A.(2018). Chemical composition, antibacterialand antioxidant activities of thymeessential oil (thymus vulgaris). Food andNutrition Sciences, 9: 433-446.
Ballester-Costa, C., Sendra, E., Fernandez-Lopez, J., Perez-Alvarez, J.A. and Viuda-Martos M. (2013). Chemical composition andin vitro antibacterial properties of essential oils of fourThymus species from organic growth. Industrial Crops and Products, 50: 304-311.
Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A.T. and Horhat, F.G. (2014). Thymus vulgaris essential oil: chemical composition and antimicrobial activity. Journal of Medicine and Life, 7 (3): 56-60.
Bučková, M., Puškárová, A., Kalászová, V., Kisová, Z. and Pangallo, D. (2018). Essential oils against multidrug resistant gram-negative bacteria. Biologia, 73(1): 803-808.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods e a review. International Journal Food Microbiology, 94: 223-253.
Buzanello, E.B., Pinheiro Machado, G.T. B., Kuhnen, S., Mazzarino, L. and Maraschin, M. (2020). Nanoemulsions containing oil and aqueous extract of green coffeebeans with antioxidant and antimicrobial activities. Nano Express, 1: 1-15.
Chan, K.W., Khong, N.M.H., Iqbal, S.,Ee Chang, S., Younas, U. and Babji, A.S. (2014). Cinnamon bark deodorised aqueous extract as potentialnatural antioxidant in meat emulsion system: a comparativestudy with synthetic and natural food antioxidants. Journal Food Science Technology, 51: 3269–3276.
Dai, J. and Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. 15: 7313–7352.
Donsì, F. and Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in Journal of Biotechnology, 233: 106–120.
El-Sayed, S.M. and El-Sayed, H.S. (2021). Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. Journal of Materials Research and Technology, 10: 1029-1041.
Erkan, N., Ayranci, G. and Ayranci, E. (2008) Antioxidant activities of rosemary(rosmarinus officinalis) extract, blackseed (nigella sativa L.) essential oil, carnosicacid, rosmarinic acid and sesamol. Food Chemistry, 110: 76-82.
Feizi Langaroudi, N. and Motakef Kazemi, N. (2019). Preparation and characterization of O/W nanoemulsion with Mint essential oil and Parsley aqueous extract and the presence effect of chitosan. Nanomed Research Journal, 4: 48-55.
Ghosh, V., Mukherjee, A. and Chandrasekaran, N. (2014). Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids and Surfaces B: Biointerfaces, 114: 392–
Gulcin, I., Kayaa, R., Gorenc, A.C., Akincioglue, H., Topalf, M., Zeynebe, Z., et al. (2019). Anticholinergic, antidiabetic and antioxidant activities of cinnamon (cinnamomum verum) bark extracts: polyphenol contents analysis by LCMS/MS. International Journal of Food Properties, 22: 1511-1526.
Hachana, Y., Ghandri, B., Amari, H. and Saidi I. (2019). Use of thyme essential oil as an antibacterial agent in raw milk intended for the production of farm cheese. Indian Journal Dairy Science, 72: 266-272.
Hosseini, M.H., Razavi, S.H., Mousavi, S.M.A., Yasaghi, S.A.S. and Hasansaraei, A.G. (2008). Improving antibacterial activity of edible films based on chitosan by incorporating thyme and clove essential oils and EDTA. Journal of Applied Sciences, 8: 2895–2900.
Hughes, J.M., Budd, P.M., Grieve, A., Dutta, P., Tiede, K. and Lewis J.(2015). Highly monodisperse, lanthanide-containing polystyrenenanoparticles as potential standard reference materials for environmental “nano” fate analysis. Journal of Applied Polymer Science, 15: 132:42061.
Iqbal, S., Younas, U., Chan, K.W., Zia-Ul-Haq, M. and Ismail, M. (2012) Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents. Molecules, 17: 6020–6032.
Jamshidi, M., Barzegar, M. and Sahari, M.A. (2013). Effect of gamma irradiation on the antioxidant and antimicrobial activities of cinnamon powder, Iranian Journal of Nutrition Science & Food Technology, 17: 73-82 [Persian].
Kang, J.H. and Song, K.B. (2018). Inhibitory effect of plant essential oil nanoemulsionsagainst Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium on red mustard leaves. Innovative Food Science Emergency Technology, 45: 447–454.
Marei, G., Rabea, E. and Badawy, M. (2017). Ultrasonic emulsificationand characterizations of bio-based nanoemulsionformulations containing citral with their antimicrobial Egyptian Academic Journal of Biological Sciences,F Toxicology & Pest Control. 9(3): 169-182.
Marino, M., Bersani, C. and Comi, G. (1999) Antimicrobial activity of the essential oils of thymus vulgaris L. measured using a bioimpedometric method. Journal of Food Protection, 62: 1017-1023.
Modarres-Gheisari, S.M.M., Gavagsaz-Ghoachani, R., Malaki, M., Safarpour, P. andZandi, M. (2019). Ultrasonic nano-emulsification–a review. Ultrason. Sonochemistry, 52:88–105.
Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. and McClements, J. (2016). Superior antibacterial activity of nanoemulsion ofThymus daenensis essential oil against E. coli. Food Chemistry, 194:410-415.
Mostafa, N. M. (2018). Antibacterial activity of ginger (Zingiber officinale) leaves essential oil nanoemulsion against the cariogenic streptococcus mutans. Journal of Applied Pharmaceutical Science, 8: 034-041.
Muppalla, S.R., Sonavale, R., Chawla, S.P.,and Sharma, A. (2012). Functional properties ofnisin-carbohydrate conjugates formed byradiation induced Maillard reaction. Radiation Physics and Chemistry, 81: 1917–1922.
Niu, F., Pan. W., Su, Y. and Yang, Y. (2016). Physical and antimicrobial properties of Thyme essential oil emulsions stabilized by oval-bumin and gum Arabic. Food Chemistry. 212: 138–45.
Othman, Z. S., Maskat, M. Y. and Hassan, N. H. Optimization of cinnamaldehyde extraction and antioxidant activity of ceylon cinnamon extract. Sains Malaysiana, 49: 995-1002
Ozogul, Y., Boğaa, E.K., Akyolb, I., Durmusa, M., Ucarc, Y., Regensteind, J.M. et al. (2020). Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Bioscience, 36: 2-6.
Ozogul, Y., Kuley, E., Ucar, Y. and Ozogul, F. (2015). Antimicrobial impacts of essential oils on food borne-pathogens. Recent Patents on Food, Nutrition & Agriculture, 7(1): 53–
Parvazi, S., Sadeghi, S., Azadi, M., Mohammadi, M., Arjmand, M., Vahabi, F., et al. (2016). The effect of aqueous extract of cinnamon on the metabolome of plasmodium falciparum using 1hnmr spectroscopy. Hindawi Publishing Corporation. Journal of Tropical Medicine. 2016: 1- 5.
Pathania, R., Khan, H., Kaushik, R. and Khan, M.A. (2019). Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal, 6: 626-643.
Seeniva San, P., Manickkam, J. and Savarimuthu, I. (2006). In vitro antibacterial activity of some plants essential oils MBC. Complementary and Alternative Medicine, 6: 147.
Solans, C., Esquena, J., Forgiarini, A.M., Uson, N., Morales, D. andIzquierdo P (2003). Nanoemulsions: formation, properties and Journal Surface Science, 109: 525-554.
Tian, B., Wang, Y., Wang, T., Mao, L., Lu, Y., Wang, H. and Feng, Z. (2019). Structure and functional properties of antioxidantnanoemulsions prepared with tea polyphenols andsoybean protein isolate. Journal of Oleo Science, 68: 689-697.
Tohidi, B., Rahimmalek, M. and Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activityof thymus species collected from different regions of Iran. Food Chemistry, 220: 153–161.
Vidanagamage, S.A., Pathiraje, P.M.H.D. and Perera, O.D.A.N. (2016). Effects of cinnamon (cinnamomum verum) extract on functional properties of butter. Procedia Food Science, 6: 136–142.
Xu, J., Zhou, F., Ji, B.P., Pei, R.S. and Xu, N. (2008). The antibacterial mechanismof carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47: 174-179.
Xue, J. and Zhong, Q. (2014). Thyme essential oil nanoemulsions coemulsified by sodium caseinate and lecithin. Journal Agriculture Food Chemistry, 62: 9900–9907.
_||_
Abdollahzadeh, E., Rezaei, M. and Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35: 177–
Ahmadi, O. and Jafarizadeh-Malmiri. H. (2021). Intensification process in thyme essential oil mnanoemulsion preparation based on subcritical water as green solvent and six different emulsifiers. Green Processing and Synthesis, 10: 430–43.
Aljabeili, H.S.,Barakat, H. and Abdel-Rahman, H.A.(2018). Chemical composition, antibacterialand antioxidant activities of thymeessential oil (thymus vulgaris). Food andNutrition Sciences, 9: 433-446.
Ballester-Costa, C., Sendra, E., Fernandez-Lopez, J., Perez-Alvarez, J.A. and Viuda-Martos M. (2013). Chemical composition andin vitro antibacterial properties of essential oils of fourThymus species from organic growth. Industrial Crops and Products, 50: 304-311.
Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A.T. and Horhat, F.G. (2014). Thymus vulgaris essential oil: chemical composition and antimicrobial activity. Journal of Medicine and Life, 7 (3): 56-60.
Bučková, M., Puškárová, A., Kalászová, V., Kisová, Z. and Pangallo, D. (2018). Essential oils against multidrug resistant gram-negative bacteria. Biologia, 73(1): 803-808.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods e a review. International Journal Food Microbiology, 94: 223-253.
Buzanello, E.B., Pinheiro Machado, G.T. B., Kuhnen, S., Mazzarino, L. and Maraschin, M. (2020). Nanoemulsions containing oil and aqueous extract of green coffeebeans with antioxidant and antimicrobial activities. Nano Express, 1: 1-15.
Chan, K.W., Khong, N.M.H., Iqbal, S.,Ee Chang, S., Younas, U. and Babji, A.S. (2014). Cinnamon bark deodorised aqueous extract as potentialnatural antioxidant in meat emulsion system: a comparativestudy with synthetic and natural food antioxidants. Journal Food Science Technology, 51: 3269–3276.
Dai, J. and Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. 15: 7313–7352.
Donsì, F. and Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in Journal of Biotechnology, 233: 106–120.
El-Sayed, S.M. and El-Sayed, H.S. (2021). Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. Journal of Materials Research and Technology, 10: 1029-1041.
Erkan, N., Ayranci, G. and Ayranci, E. (2008) Antioxidant activities of rosemary(rosmarinus officinalis) extract, blackseed (nigella sativa L.) essential oil, carnosicacid, rosmarinic acid and sesamol. Food Chemistry, 110: 76-82.
Feizi Langaroudi, N. and Motakef Kazemi, N. (2019). Preparation and characterization of O/W nanoemulsion with Mint essential oil and Parsley aqueous extract and the presence effect of chitosan. Nanomed Research Journal, 4: 48-55.
Ghosh, V., Mukherjee, A. and Chandrasekaran, N. (2014). Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids and Surfaces B: Biointerfaces, 114: 392–
Gulcin, I., Kayaa, R., Gorenc, A.C., Akincioglue, H., Topalf, M., Zeynebe, Z., et al. (2019). Anticholinergic, antidiabetic and antioxidant activities of cinnamon (cinnamomum verum) bark extracts: polyphenol contents analysis by LCMS/MS. International Journal of Food Properties, 22: 1511-1526.
Hachana, Y., Ghandri, B., Amari, H. and Saidi I. (2019). Use of thyme essential oil as an antibacterial agent in raw milk intended for the production of farm cheese. Indian Journal Dairy Science, 72: 266-272.
Hosseini, M.H., Razavi, S.H., Mousavi, S.M.A., Yasaghi, S.A.S. and Hasansaraei, A.G. (2008). Improving antibacterial activity of edible films based on chitosan by incorporating thyme and clove essential oils and EDTA. Journal of Applied Sciences, 8: 2895–2900.
Hughes, J.M., Budd, P.M., Grieve, A., Dutta, P., Tiede, K. and Lewis J.(2015). Highly monodisperse, lanthanide-containing polystyrenenanoparticles as potential standard reference materials for environmental “nano” fate analysis. Journal of Applied Polymer Science, 15: 132:42061.
Iqbal, S., Younas, U., Chan, K.W., Zia-Ul-Haq, M. and Ismail, M. (2012) Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents. Molecules, 17: 6020–6032.
Jamshidi, M., Barzegar, M. and Sahari, M.A. (2013). Effect of gamma irradiation on the antioxidant and antimicrobial activities of cinnamon powder, Iranian Journal of Nutrition Science & Food Technology, 17: 73-82 [Persian].
Kang, J.H. and Song, K.B. (2018). Inhibitory effect of plant essential oil nanoemulsionsagainst Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium on red mustard leaves. Innovative Food Science Emergency Technology, 45: 447–454.
Marei, G., Rabea, E. and Badawy, M. (2017). Ultrasonic emulsificationand characterizations of bio-based nanoemulsionformulations containing citral with their antimicrobial Egyptian Academic Journal of Biological Sciences,F Toxicology & Pest Control. 9(3): 169-182.
Marino, M., Bersani, C. and Comi, G. (1999) Antimicrobial activity of the essential oils of thymus vulgaris L. measured using a bioimpedometric method. Journal of Food Protection, 62: 1017-1023.
Modarres-Gheisari, S.M.M., Gavagsaz-Ghoachani, R., Malaki, M., Safarpour, P. andZandi, M. (2019). Ultrasonic nano-emulsification–a review. Ultrason. Sonochemistry, 52:88–105.
Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. and McClements, J. (2016). Superior antibacterial activity of nanoemulsion ofThymus daenensis essential oil against E. coli. Food Chemistry, 194:410-415.
Mostafa, N. M. (2018). Antibacterial activity of ginger (Zingiber officinale) leaves essential oil nanoemulsion against the cariogenic streptococcus mutans. Journal of Applied Pharmaceutical Science, 8: 034-041.
Muppalla, S.R., Sonavale, R., Chawla, S.P.,and Sharma, A. (2012). Functional properties ofnisin-carbohydrate conjugates formed byradiation induced Maillard reaction. Radiation Physics and Chemistry, 81: 1917–1922.
Niu, F., Pan. W., Su, Y. and Yang, Y. (2016). Physical and antimicrobial properties of Thyme essential oil emulsions stabilized by oval-bumin and gum Arabic. Food Chemistry. 212: 138–45.
Othman, Z. S., Maskat, M. Y. and Hassan, N. H. Optimization of cinnamaldehyde extraction and antioxidant activity of ceylon cinnamon extract. Sains Malaysiana, 49: 995-1002
Ozogul, Y., Boğaa, E.K., Akyolb, I., Durmusa, M., Ucarc, Y., Regensteind, J.M. et al. (2020). Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Bioscience, 36: 2-6.
Ozogul, Y., Kuley, E., Ucar, Y. and Ozogul, F. (2015). Antimicrobial impacts of essential oils on food borne-pathogens. Recent Patents on Food, Nutrition & Agriculture, 7(1): 53–
Parvazi, S., Sadeghi, S., Azadi, M., Mohammadi, M., Arjmand, M., Vahabi, F., et al. (2016). The effect of aqueous extract of cinnamon on the metabolome of plasmodium falciparum using 1hnmr spectroscopy. Hindawi Publishing Corporation. Journal of Tropical Medicine. 2016: 1- 5.
Pathania, R., Khan, H., Kaushik, R. and Khan, M.A. (2019). Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal, 6: 626-643.
Seeniva San, P., Manickkam, J. and Savarimuthu, I. (2006). In vitro antibacterial activity of some plants essential oils MBC. Complementary and Alternative Medicine, 6: 147.
Solans, C., Esquena, J., Forgiarini, A.M., Uson, N., Morales, D. andIzquierdo P (2003). Nanoemulsions: formation, properties and Journal Surface Science, 109: 525-554.
Tian, B., Wang, Y., Wang, T., Mao, L., Lu, Y., Wang, H. and Feng, Z. (2019). Structure and functional properties of antioxidantnanoemulsions prepared with tea polyphenols andsoybean protein isolate. Journal of Oleo Science, 68: 689-697.
Tohidi, B., Rahimmalek, M. and Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activityof thymus species collected from different regions of Iran. Food Chemistry, 220: 153–161.
Vidanagamage, S.A., Pathiraje, P.M.H.D. and Perera, O.D.A.N. (2016). Effects of cinnamon (cinnamomum verum) extract on functional properties of butter. Procedia Food Science, 6: 136–142.
Xu, J., Zhou, F., Ji, B.P., Pei, R.S. and Xu, N. (2008). The antibacterial mechanismof carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47: 174-179.
Xue, J. and Zhong, Q. (2014). Thyme essential oil nanoemulsions coemulsified by sodium caseinate and lecithin. Journal Agriculture Food Chemistry, 62: 9900–9907.